These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


276 related items for PubMed ID: 25296503

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Covalent immobilization of porcine pancreatic lipase on carboxyl-activated magnetic nanoparticles: characterization and application for enzymatic inhibition assays.
    Zhu YT, Ren XY, Liu YM, Wei Y, Qing LS, Liao X.
    Mater Sci Eng C Mater Biol Appl; 2014 May 01; 38():278-85. PubMed ID: 24656379
    [Abstract] [Full Text] [Related]

  • 5. [Spectroscopy study of the immobilized cellulase of magnetic nanoparticles Fe3O4].
    Wang M, Song F, Wang SL, Wu QS.
    Guang Pu Xue Yu Guang Pu Fen Xi; 2006 May 01; 26(5):895-8. PubMed ID: 16883863
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Covalent immobilization of cellulases onto a water-soluble-insoluble reversible polymer.
    Yu Y, Yuan J, Wang Q, Fan X, Wang P.
    Appl Biochem Biotechnol; 2012 Mar 01; 166(6):1433-41. PubMed ID: 22249855
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Immobilization of Cellulase onto Core-Shell Magnetic Gold Nanoparticles Functionalized by Aspartic Acid and Determination of its Activity.
    Poorakbar E, Saboury AA, Laame Rad B, Khoshnevisan K.
    Protein J; 2020 Aug 01; 39(4):328-336. PubMed ID: 32671518
    [Abstract] [Full Text] [Related]

  • 12. Immobilization of β-d-galactosidase from Kluyveromyces lactis on functionalized silicon dioxide nanoparticles: characterization and lactose hydrolysis.
    Verma ML, Barrow CJ, Kennedy JF, Puri M.
    Int J Biol Macromol; 2012 Mar 01; 50(2):432-7. PubMed ID: 22230612
    [Abstract] [Full Text] [Related]

  • 13. Immobilization and kinetics of catalase on calcium carbonate nanoparticles attached epoxy support.
    Preety, Hooda V.
    Appl Biochem Biotechnol; 2014 Jan 01; 172(1):115-30. PubMed ID: 24048961
    [Abstract] [Full Text] [Related]

  • 14. Enhanced Catalytic Performance of Trichoderma reesei Cellulase Immobilized on Magnetic Hierarchical Porous Carbon Nanoparticles.
    Papadopoulou A, Zarafeta D, Galanopoulou AP, Stamatis H.
    Protein J; 2019 Dec 01; 38(6):640-648. PubMed ID: 31549278
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Facile route to enzyme immobilization: core-shell nanoenzyme particles consisting of well-defined poly(methyl methacrylate) cores and cellulase shells.
    Ho KM, Mao X, Gu L, Li P.
    Langmuir; 2008 Oct 07; 24(19):11036-42. PubMed ID: 18788820
    [Abstract] [Full Text] [Related]

  • 18. Graphene oxide as a matrix for the immobilization of glucose oxidase.
    Zhou L, Jiang Y, Gao J, Zhao X, Ma L.
    Appl Biochem Biotechnol; 2012 Nov 07; 168(6):1635-42. PubMed ID: 22965306
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. A tri-enzyme co-immobilized magnetic complex: Process details, kinetics, thermodynamics and applications.
    Muley AB, Thorat AS, Singhal RS, Harinath Babu K.
    Int J Biol Macromol; 2018 Oct 15; 118(Pt B):1781-1795. PubMed ID: 30003912
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.