These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


922 related items for PubMed ID: 25299987

  • 1. A dumbell probe-mediated rolling circle amplification strategy for highly sensitive transcription factor detection.
    Li C, Qiu X, Hou Z, Deng K.
    Biosens Bioelectron; 2015 Feb 15; 64():505-10. PubMed ID: 25299987
    [Abstract] [Full Text] [Related]

  • 2. Target binding protection mediated rolling circle amplification for sensitive detection of transcription factors.
    Zhang K, Wang L, Zhao H, Jiang W.
    Talanta; 2018 Mar 01; 179():331-336. PubMed ID: 29310240
    [Abstract] [Full Text] [Related]

  • 3. Sensitive fluorescent detection of DNA methyltransferase using nicking endonuclease-mediated multiple primers-like rolling circle amplification.
    Huang J, Li XY, Du YC, Zhang LN, Liu KK, Zhu LN, Kong DM.
    Biosens Bioelectron; 2017 May 15; 91():417-423. PubMed ID: 28063390
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. An isothermal and sensitive nucleic acids assay by target sequence recycled rolling circle amplification.
    Long Y, Zhou X, Xing D.
    Biosens Bioelectron; 2013 Aug 15; 46():102-7. PubMed ID: 23517825
    [Abstract] [Full Text] [Related]

  • 7. A DNA nanomachine based on rolling circle amplification-bridged two-stage exonuclease III-assisted recycling strategy for label-free multi-amplified biosensing of nucleic acid.
    Xue Q, Lv Y, Cui H, Gu X, Zhang S, Liu J.
    Anal Chim Acta; 2015 Jan 26; 856():103-9. PubMed ID: 25542364
    [Abstract] [Full Text] [Related]

  • 8. Highly Selective and Sensitive Electrochemiluminescence Biosensor for p53 DNA Sequence Based on Nicking Endonuclease Assisted Target Recycling and Hyperbranched Rolling Circle Amplification.
    Yang L, Tao Y, Yue G, Li R, Qiu B, Guo L, Lin Z, Yang HH.
    Anal Chem; 2016 May 17; 88(10):5097-103. PubMed ID: 27086663
    [Abstract] [Full Text] [Related]

  • 9. Rapid and ultrasensitive miRNA detection by combining endonuclease reactions in a rolling circle amplification (RCA)-based hairpin DNA fluorescent assay.
    Lee YJ, Jeong JY, Do JY, Hong CA.
    Anal Bioanal Chem; 2023 Apr 17; 415(10):1991-1999. PubMed ID: 36853410
    [Abstract] [Full Text] [Related]

  • 10. A universal electrochemical sensing system for small biomolecules using target-mediated sticky ends-based ligation-rolling circle amplification.
    Yi X, Li L, Peng Y, Guo L.
    Biosens Bioelectron; 2014 Jul 15; 57():103-9. PubMed ID: 24561524
    [Abstract] [Full Text] [Related]

  • 11. Terminal protection of small-molecule-linked DNA for sensitive fluorescence detection of protein binding based on nucleic acid amplification.
    Ou LJ, Wang HB, Chu X.
    Analyst; 2013 Dec 07; 138(23):7218-23. PubMed ID: 24131014
    [Abstract] [Full Text] [Related]

  • 12. Sensitive detection of proteins using assembled cascade fluorescent DNA nanotags based on rolling circle amplification.
    Xue Q, Wang Z, Wang L, Jiang W.
    Bioconjug Chem; 2012 Apr 18; 23(4):734-9. PubMed ID: 22384977
    [Abstract] [Full Text] [Related]

  • 13. Ultrasensitive assay based on a combined cascade amplification by nicking-mediated rolling circle amplification and symmetric strand-displacement amplification.
    Xu H, Zhang Y, Zhang S, Sun M, Li W, Jiang Y, Wu ZS.
    Anal Chim Acta; 2019 Jan 24; 1047():172-178. PubMed ID: 30567647
    [Abstract] [Full Text] [Related]

  • 14. A trifunctional split dumbbell probe coupled with ligation-triggered isothermal rolling circle amplification for label-free and sensitive detection of nicotinamide adenine dinucleotide.
    Meng YR, Zhang D, Zou X, Ma F, Kang Q, Zhang CY.
    Talanta; 2021 Mar 01; 224():121962. PubMed ID: 33379129
    [Abstract] [Full Text] [Related]

  • 15. Primer remodeling amplification-activated multisite-catalytic hairpin assembly enabling the concurrent formation of Y-shaped DNA nanotorches for the fluorescence assay of ochratoxin A.
    Wang J, Wang Y, Liu S, Wang H, Zhang X, Song X, Yu J, Huang J.
    Analyst; 2019 May 21; 144(10):3389-3397. PubMed ID: 30990481
    [Abstract] [Full Text] [Related]

  • 16. Nicking-enhanced rolling circle amplification for sensitive fluorescent detection of cancer-related microRNAs.
    Gao Z, Wu C, Lv S, Wang C, Zhang N, Xiao S, Han Y, Xu H, Zhang Y, Li F, Lyu J, Shen Z.
    Anal Bioanal Chem; 2018 Oct 21; 410(26):6819-6826. PubMed ID: 30066196
    [Abstract] [Full Text] [Related]

  • 17. Amplified and multiplexed detection of DNA using the dendritic rolling circle amplified synthesis of DNAzyme reporter units.
    Wang F, Lu CH, Liu X, Freage L, Willner I.
    Anal Chem; 2014 Feb 04; 86(3):1614-21. PubMed ID: 24377284
    [Abstract] [Full Text] [Related]

  • 18. An "off-on" electrochemiluminescent biosensor based on DNAzyme-assisted target recycling and rolling circle amplifications for ultrasensitive detection of microRNA.
    Zhang P, Wu X, Yuan R, Chai Y.
    Anal Chem; 2015 Mar 17; 87(6):3202-7. PubMed ID: 25679541
    [Abstract] [Full Text] [Related]

  • 19. Triple-helix molecular-switch-actuated exponential rolling circular amplification for ultrasensitive fluorescence detection of miRNAs.
    Zhao Y, Wang Y, Liu S, Wang C, Liang J, Li S, Qu X, Zhang R, Yu J, Huang J.
    Analyst; 2019 Aug 16; 144(17):5245-5253. PubMed ID: 31361292
    [Abstract] [Full Text] [Related]

  • 20. A simple fluorescence biosensing strategy for ultrasensitive detection of the BCR-ABL1 fusion gene based on a DNA machine and multiple primer-like rolling circle amplification.
    Wu H, Zhou X, Cheng W, Yuan T, Zhao M, Duan X, Ding S.
    Analyst; 2018 Oct 08; 143(20):4974-4980. PubMed ID: 30225494
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 47.