These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
707 related items for PubMed ID: 25301789
1. Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector. Notarianni M, Liu J, Mirri F, Pasquali M, Motta N. Nanotechnology; 2014 Oct 31; 25(43):435405. PubMed ID: 25301789 [Abstract] [Full Text] [Related]
2. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. Zheng Q, Cai Z, Ma Z, Gong S. ACS Appl Mater Interfaces; 2015 Feb 11; 7(5):3263-71. PubMed ID: 25625769 [Abstract] [Full Text] [Related]
4. High-performance graphene-based supercapacitors made by a scalable blade-coating approach. Wang B, Liu J, Mirri F, Pasquali M, Motta N, Holmes JW. Nanotechnology; 2016 Apr 22; 27(16):165402. PubMed ID: 26953864 [Abstract] [Full Text] [Related]
6. Layer-by-layer self-assembled multilayer films composed of graphene/polyaniline bilayers: high-energy electrode materials for supercapacitors. Sarker AK, Hong JD. Langmuir; 2012 Aug 28; 28(34):12637-46. PubMed ID: 22866750 [Abstract] [Full Text] [Related]
7. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. Xu Y, Lin Z, Huang X, Liu Y, Huang Y, Duan X. ACS Nano; 2013 May 28; 7(5):4042-9. PubMed ID: 23550832 [Abstract] [Full Text] [Related]
8. Oxygen Evolution Assisted Fabrication of Highly Loaded Carbon Nanotube/MnO2 Hybrid Films for High-Performance Flexible Pseudosupercapacitors. Chen H, Zeng S, Chen M, Zhang Y, Zheng L, Li Q. Small; 2016 Apr 28; 12(15):2035-45. PubMed ID: 26929042 [Abstract] [Full Text] [Related]
10. Multilayered poly(p-phenylenevinylene)/reduced graphene oxide film: an efficient organic current collector in an all-plastic supercapacitor. Wee BH, Hong JD. Langmuir; 2014 May 13; 30(18):5267-75. PubMed ID: 24773165 [Abstract] [Full Text] [Related]
11. Fabrication and Electrochemical Performance of PVA/CNT/PANI Flexible Films as Electrodes for Supercapacitors. Ben J, Song Z, Liu X, Lü W, Li X. Nanoscale Res Lett; 2020 Jul 22; 15(1):151. PubMed ID: 32699960 [Abstract] [Full Text] [Related]
14. Porous honeycomb structures formed from interconnected MnO2 sheets on CNT-coated substrates for flexible all-solid-state supercapacitors. Ko WY, Chen YF, Lu KM, Lin KJ. Sci Rep; 2016 Jan 04; 6():18887. PubMed ID: 26726724 [Abstract] [Full Text] [Related]
15. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors. Jin Y, Chen H, Chen M, Liu N, Li Q. ACS Appl Mater Interfaces; 2013 Apr 24; 5(8):3408-16. PubMed ID: 23488813 [Abstract] [Full Text] [Related]
16. Flexible Black-Phosphorus Nanoflake/Carbon Nanotube Composite Paper for High-Performance All-Solid-State Supercapacitors. Yang B, Hao C, Wen F, Wang B, Mu C, Xiang J, Li L, Xu B, Zhao Z, Liu Z, Tian Y. ACS Appl Mater Interfaces; 2017 Dec 27; 9(51):44478-44484. PubMed ID: 29192760 [Abstract] [Full Text] [Related]
17. Carbon nanotube-bridged graphene 3D building blocks for ultrafast compact supercapacitors. Pham DT, Lee TH, Luong DH, Yao F, Ghosh A, Le VT, Kim TH, Li B, Chang J, Lee YH. ACS Nano; 2015 Feb 24; 9(2):2018-27. PubMed ID: 25643138 [Abstract] [Full Text] [Related]
19. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode. Zhu G, He Z, Chen J, Zhao J, Feng X, Ma Y, Fan Q, Wang L, Huang W. Nanoscale; 2014 Jan 21; 6(2):1079-85. PubMed ID: 24296659 [Abstract] [Full Text] [Related]
20. Ultrastrong, foldable, and highly conductive carbon nanotube film. Di J, Hu D, Chen H, Yong Z, Chen M, Feng Z, Zhu Y, Li Q. ACS Nano; 2012 Jun 26; 6(6):5457-64. PubMed ID: 22591354 [Abstract] [Full Text] [Related] Page: [Next] [New Search]