These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Strategies to increase the stability of intermediate moisture foods towards Zygosaccharomyces rouxii: the effect of temperature, ethanol, pH and water activity, with or without the influence of organic acids. Vermeulen A, Marvig CL, Daelman J, Xhaferi R, Nielsen DS, Devlieghere F. Food Microbiol; 2015 Feb; 45(Pt A):119-25. PubMed ID: 25481068 [Abstract] [Full Text] [Related]
3. Screening of different stress factors and development of growth/no growth models for Zygosaccharomyces rouxii in modified Sabouraud medium, mimicking intermediate moisture foods (IMF). Vermeulen A, Daelman J, Van Steenkiste J, Devlieghere F. Food Microbiol; 2012 Dec; 32(2):389-96. PubMed ID: 22986205 [Abstract] [Full Text] [Related]
5. Zygosaccharomyces lentus: a significant new osmophilic, preservative-resistant spoilage yeast, capable of growth at low temperature. Steels H, James SA, Roberts IN, Stratford M. J Appl Microbiol; 1999 Oct; 87(4):520-7. PubMed ID: 10583679 [Abstract] [Full Text] [Related]
6. Physiological characterization of spoilage strains of Zygosaccharomyces bailii and Zygosaccharomyces rouxii isolated from high sugar environments. Martorell P, Stratford M, Steels H, Fernández-Espinar MT, Querol A. Int J Food Microbiol; 2007 Mar 10; 114(2):234-42. PubMed ID: 17239464 [Abstract] [Full Text] [Related]
8. Zygosaccharomyces rouxii is the predominant species responsible for the spoilage of the mix base for ice cream and ethanol is the best inhibitor tested. Iacumin L, Colautti A, Comi G. Food Microbiol; 2022 Apr 10; 102():103929. PubMed ID: 34809955 [Abstract] [Full Text] [Related]
10. Influence of modified atmosphere and preservatives on the growth of Zygosaccharomyces rouxii isolated from dried fruits. el Halouat A, Debevere JM. Int J Food Microbiol; 1996 Dec 10; 33(2-3):219-29. PubMed ID: 8930707 [Abstract] [Full Text] [Related]
11. Modelling the unexpected effect of acetic and lactic acid in combination with pH and aw on the growth/no growth interface of Zygosaccharomyces bailii. Vermeulen A, Dang TD, Geeraerd AH, Bernaerts K, Debevere J, Van Impe J, Devlieghere F. Int J Food Microbiol; 2008 May 10; 124(1):79-90. PubMed ID: 18400324 [Abstract] [Full Text] [Related]
12. Combined effects of pH and sugar on growth rate of Zygosaccharomyces rouxii, a bakery product spoilage yeast. Membré JM, Kubaczka M, Chéné C. Appl Environ Microbiol; 1999 Nov 10; 65(11):4921-5. PubMed ID: 10543804 [Abstract] [Full Text] [Related]
13. The importance of expressing antimicrobial agents on water basis in growth/no growth interface models: a case study for Zygosaccharomyces bailii. Dang TD, Vermeulen A, Mertens L, Geeraerd AH, Van Impe JF, Devlieghere F. Int J Food Microbiol; 2011 Jan 31; 145(1):258-66. PubMed ID: 21272949 [Abstract] [Full Text] [Related]
14. Population heterogeneity and dynamics in starter culture and lag phase adaptation of the spoilage yeast Zygosaccharomyces bailii to weak acid preservatives. Stratford M, Steels H, Nebe-von-Caron G, Avery SV, Novodvorska M, Archer DB. Int J Food Microbiol; 2014 Jul 02; 181(100):40-7. PubMed ID: 24813627 [Abstract] [Full Text] [Related]
15. Sorbic acid resistance: the inoculum effect. Steels H, James SA, Roberts IN, Stratford M. Yeast; 2000 Sep 30; 16(13):1173-83. PubMed ID: 10992281 [Abstract] [Full Text] [Related]
16. Zygosaccharomyces rouxii strains CECT 11923 and Z. rouxii CECT 10425: Two new putative hybrids? Wrent P, Rivas EM, Peinado JM, de Silóniz MI. Int J Food Microbiol; 2017 Jan 16; 241():7-14. PubMed ID: 27736687 [Abstract] [Full Text] [Related]