These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


138 related items for PubMed ID: 25308379

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. The interday reliability of ankle, knee, leg, and vertical musculoskeletal stiffness during hopping and overground running.
    Joseph CW, Bradshaw EJ, Kemp J, Clark RA.
    J Appl Biomech; 2013 Aug; 29(4):386-94. PubMed ID: 22923423
    [Abstract] [Full Text] [Related]

  • 5. Leg stiffness primarily depends on ankle stiffness during human hopping.
    Farley CT, Morgenroth DC.
    J Biomech; 1999 Mar; 32(3):267-73. PubMed ID: 10093026
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. A comparison of computation methods for leg stiffness during hopping.
    Hobara H, Inoue K, Kobayashi Y, Ogata T.
    J Appl Biomech; 2014 Feb; 30(1):154-9. PubMed ID: 24676522
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Hopping with degressive spring stiffness in a full-leg exoskeleton lowers metabolic cost compared with progressive spring stiffness and hopping without assistance.
    Allen SP, Grabowski AM.
    J Appl Physiol (1985); 2019 Aug 01; 127(2):520-530. PubMed ID: 31219770
    [Abstract] [Full Text] [Related]

  • 13. Constant and variable stiffness and damping of the leg joints in human hopping.
    Rapoport S, Mizrahi J, Kimmel E, Verbitsky O, Isakov E.
    J Biomech Eng; 2003 Aug 01; 125(4):507-14. PubMed ID: 12968575
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Neuromechanical adaptation to hopping with an elastic ankle-foot orthosis.
    Ferris DP, Bohra ZA, Lukos JR, Kinnaird CR.
    J Appl Physiol (1985); 2006 Jan 01; 100(1):163-70. PubMed ID: 16179395
    [Abstract] [Full Text] [Related]

  • 16. Differences in lower extremity stiffness between endurance-trained athletes and untrained subjects.
    Hobara H, Kimura K, Omuro K, Gomi K, Muraoka T, Sakamoto M, Kanosue K.
    J Sci Med Sport; 2010 Jan 01; 13(1):106-11. PubMed ID: 18951842
    [Abstract] [Full Text] [Related]

  • 17. Differences in spring-mass characteristics between one- and two-legged hopping.
    Hobara H, Kobayashi Y, Kato E, Ogata T.
    J Appl Biomech; 2013 Dec 01; 29(6):785-9. PubMed ID: 23271206
    [Abstract] [Full Text] [Related]

  • 18. Neuromuscular changes for hopping on a range of damped surfaces.
    Moritz CT, Greene SM, Farley CT.
    J Appl Physiol (1985); 2004 May 01; 96(5):1996-2004. PubMed ID: 14688034
    [Abstract] [Full Text] [Related]

  • 19. Linking the mechanics and energetics of hopping with elastic ankle exoskeletons.
    Farris DJ, Sawicki GS.
    J Appl Physiol (1985); 2012 Dec 15; 113(12):1862-72. PubMed ID: 23065760
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.