These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


256 related items for PubMed ID: 25309995

  • 1. Critical Role of IP-10 on Reducing Experimental Corneal Neovascularization.
    Liu G, Zhang W, Xiao Y, Lu P.
    Curr Eye Res; 2015 Sep; 40(9):891-901. PubMed ID: 25309995
    [Abstract] [Full Text] [Related]

  • 2. Interleukin (IL)-17A Promotes Angiogenesis in an Experimental Corneal Neovascularization Model.
    Liu G, Wu H, Lu P, Zhang X.
    Curr Eye Res; 2017 Mar; 42(3):368-379. PubMed ID: 27419340
    [Abstract] [Full Text] [Related]

  • 3. Critical role of TNF-α-induced macrophage VEGF and iNOS production in the experimental corneal neovascularization.
    Lu P, Li L, Liu G, Baba T, Ishida Y, Nosaka M, Kondo T, Zhang X, Mukaida N.
    Invest Ophthalmol Vis Sci; 2012 Jun 14; 53(7):3516-26. PubMed ID: 22570350
    [Abstract] [Full Text] [Related]

  • 4. Critical role of SDF-1α-induced progenitor cell recruitment and macrophage VEGF production in the experimental corneal neovascularization.
    Liu G, Lu P, Li L, Jin H, He X, Mukaida N, Zhang X.
    Mol Vis; 2011 Jun 14; 17():2129-38. PubMed ID: 21850188
    [Abstract] [Full Text] [Related]

  • 5. [Inhibited experimental mouse corneal neovascularization by CCR3 antagonist].
    Liu G, He X, Zhou W, Xiao Y, Chen Z, Lu P.
    Zhonghua Yan Ke Za Zhi; 2014 Apr 14; 50(4):285-9. PubMed ID: 24931155
    [Abstract] [Full Text] [Related]

  • 6. Allograft survival enhancement using doxycycline in alkali-burned mouse corneas.
    Ling S, Li W, Liu L, Zhou H, Wang T, Ye H, Liang L, Yuan J.
    Acta Ophthalmol; 2013 Aug 14; 91(5):e369-78. PubMed ID: 23387987
    [Abstract] [Full Text] [Related]

  • 7. ADP-ribosylation factor as a novel target for corneal neovascularization regression.
    Dai C, Liu G, Li L, Xiao Y, Zhang X, Lu P.
    Mol Vis; 2012 Aug 14; 18():2947-53. PubMed ID: 23288987
    [Abstract] [Full Text] [Related]

  • 8. Enhanced experimental corneal neovascularization along with aberrant angiogenic factor expression in the absence of IL-1 receptor antagonist.
    Lu P, Li L, Liu G, Zhang X, Mukaida N.
    Invest Ophthalmol Vis Sci; 2009 Oct 14; 50(10):4761-8. PubMed ID: 19458323
    [Abstract] [Full Text] [Related]

  • 9. B-cell leukemia/lymphoma 10 promotes angiogenesis in an experimental corneal neovascularization model.
    Liu G, Lu P, Chen L, Zhang W, Wang M, Li D, Zhang X.
    Eye (Lond); 2018 Jul 14; 32(7):1220-1231. PubMed ID: 29515217
    [Abstract] [Full Text] [Related]

  • 10. Alkali-induced corneal neovascularization is independent of CXCR2-mediated neutrophil infiltration.
    Lu P, Li L, Mukaida N, Zhang X.
    Cornea; 2007 Feb 14; 26(2):199-206. PubMed ID: 17251813
    [Abstract] [Full Text] [Related]

  • 11. A siRNA targeting vascular endothelial growth factor-A inhibiting experimental corneal neovascularization.
    Zuo L, Fan Y, Wang F, Gu Q, Xu X.
    Curr Eye Res; 2010 May 14; 35(5):375-84. PubMed ID: 20450250
    [Abstract] [Full Text] [Related]

  • 12. Opposite roles of CCR2 and CX3CR1 macrophages in alkali-induced corneal neovascularization.
    Lu P, Li L, Liu G, van Rooijen N, Mukaida N, Zhang X.
    Cornea; 2009 Jun 14; 28(5):562-9. PubMed ID: 19421039
    [Abstract] [Full Text] [Related]

  • 13. Inhibitory effect of rapamycin on corneal neovascularization in vitro and in vivo.
    Kwon YS, Hong HS, Kim JC, Shin JS, Son Y.
    Invest Ophthalmol Vis Sci; 2005 Feb 14; 46(2):454-60. PubMed ID: 15671269
    [Abstract] [Full Text] [Related]

  • 14. Inhibition of mouse alkali burn induced-corneal neovascularization by recombinant adenovirus encoding human vasohibin-1.
    Zhou SY, Xie ZL, Xiao O, Yang XR, Heng BC, Sato Y.
    Mol Vis; 2010 Jul 26; 16():1389-98. PubMed ID: 20680097
    [Abstract] [Full Text] [Related]

  • 15. The effect of TC14012 on alkali burn-induced corneal neovascularization in mice.
    Shen M, Yuan F, Jin J, Yuan Y.
    Ophthalmic Res; 2014 Jul 26; 52(1):17-24. PubMed ID: 24853648
    [Abstract] [Full Text] [Related]

  • 16. The role of integrin alpha5beta1 in the regulation of corneal neovascularization.
    Muether PS, Dell S, Kociok N, Zahn G, Stragies R, Vossmeyer D, Joussen AM.
    Exp Eye Res; 2007 Sep 26; 85(3):356-65. PubMed ID: 17659277
    [Abstract] [Full Text] [Related]

  • 17. Chemical injury-induced corneal opacity and neovascularization reduced by rapamycin via TGF-β1/ERK pathways regulation.
    Shin YJ, Hyon JY, Choi WS, Yi K, Chung ES, Chung TY, Wee WR.
    Invest Ophthalmol Vis Sci; 2013 Jul 02; 54(7):4452-8. PubMed ID: 23716625
    [Abstract] [Full Text] [Related]

  • 18. Comparison of genome-wide gene expression in suture- and alkali burn-induced murine corneal neovascularization.
    Jia C, Zhu W, Ren S, Xi H, Li S, Wang Y.
    Mol Vis; 2011 Jul 02; 17():2386-99. PubMed ID: 21921991
    [Abstract] [Full Text] [Related]

  • 19. Protective roles of the fractalkine/CX3CL1-CX3CR1 interactions in alkali-induced corneal neovascularization through enhanced antiangiogenic factor expression.
    Lu P, Li L, Kuno K, Wu Y, Baba T, Li YY, Zhang X, Mukaida N.
    J Immunol; 2008 Mar 15; 180(6):4283-91. PubMed ID: 18322241
    [Abstract] [Full Text] [Related]

  • 20. Inhibition of Experimental Corneal Neovascularization by the Tight Junction Protein ZO-1.
    Yao Q, Wu H, Ren H, Cao J, Shao Y, Liu G, Lu P.
    J Ocul Pharmacol Ther; 2024 Mar 15; 40(6):379-388. PubMed ID: 39172123
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.