These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


272 related items for PubMed ID: 25310489

  • 1. Surface-enhanced Raman scattering aptasensor for ultrasensitive trace analysis of bisphenol A.
    Chung E, Jeon J, Yu J, Lee C, Choo J.
    Biosens Bioelectron; 2015 Feb 15; 64():560-5. PubMed ID: 25310489
    [Abstract] [Full Text] [Related]

  • 2. Surface-imprinted core-shell Au nanoparticles for selective detection of bisphenol A based on surface-enhanced Raman scattering.
    Xue JQ, Li DW, Qu LL, Long YT.
    Anal Chim Acta; 2013 May 13; 777():57-62. PubMed ID: 23622965
    [Abstract] [Full Text] [Related]

  • 3. A label-free photoelectrochemical aptasensor for bisphenol A based on surface plasmon resonance of gold nanoparticle-sensitized ZnO nanopencils.
    Qiao Y, Li J, Li H, Fang H, Fan D, Wang W.
    Biosens Bioelectron; 2016 Dec 15; 86():315-320. PubMed ID: 27387262
    [Abstract] [Full Text] [Related]

  • 4. A simple approach for ultrasensitive detection of bisphenols by multiplexed surface-enhanced Raman scattering.
    De Bleye C, Dumont E, Hubert C, Sacré PY, Netchacovitch L, Chavez PF, Hubert P, Ziemons E.
    Anal Chim Acta; 2015 Aug 12; 888():118-25. PubMed ID: 26320966
    [Abstract] [Full Text] [Related]

  • 5. Ultrasensitive one-step rapid visual detection of bisphenol A in water samples by label-free aptasensor.
    Mei Z, Chu H, Chen W, Xue F, Liu J, Xu H, Zhang R, Zheng L.
    Biosens Bioelectron; 2013 Jan 15; 39(1):26-30. PubMed ID: 22794930
    [Abstract] [Full Text] [Related]

  • 6. Building SERS-active heteroassemblies for ultrasensitive Bisphenol A detection.
    Feng J, Xu L, Cui G, Wu X, Ma W, Kuang H, Xu C.
    Biosens Bioelectron; 2016 Jul 15; 81():138-142. PubMed ID: 26943786
    [Abstract] [Full Text] [Related]

  • 7. Highly sensitive and selective optofluidics-based immunosensor for rapid assessment of Bisphenol A leaching risk.
    Long F, Zhu A, Zhou X, Wang H, Zhao Z, Liu L, Shi H.
    Biosens Bioelectron; 2014 May 15; 55():19-25. PubMed ID: 24355461
    [Abstract] [Full Text] [Related]

  • 8. A novel electrochemical aptasensor for bisphenol A assay based on triple-signaling strategy.
    Yu P, Liu Y, Zhang X, Zhou J, Xiong E, Li X, Chen J.
    Biosens Bioelectron; 2016 May 15; 79():22-8. PubMed ID: 26686919
    [Abstract] [Full Text] [Related]

  • 9. Magnetic Halloysite Nanotube-Based SERS Biosensor Enhanced with Au@Ag Core-Shell Nanotags for Bisphenol A Determination.
    Li S, He D, Li S, Chen R, Peng Y, Li S, Han D, Wang Y, Qin K, Ren S, Chen P, Gao Z.
    Biosensors (Basel); 2022 Jun 02; 12(6):. PubMed ID: 35735535
    [Abstract] [Full Text] [Related]

  • 10. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing.
    Wang C, Wu X, Dong P, Chen J, Xiao R.
    Biosens Bioelectron; 2016 Dec 15; 86():944-950. PubMed ID: 27498319
    [Abstract] [Full Text] [Related]

  • 11. An ultrasensitive fluorescent aptasensor based on truncated aptamer and AGET ATRP for the detection of bisphenol A.
    Guo Z, Tang J, Li M, Liu Y, Yang H, Kong J.
    Anal Bioanal Chem; 2019 Nov 15; 411(29):7807-7815. PubMed ID: 31745613
    [Abstract] [Full Text] [Related]

  • 12. Simple and rapid detection of bisphenol A using a gold nanoparticle-based colorimetric aptasensor.
    Lee EH, Lee SK, Kim MJ, Lee SW.
    Food Chem; 2019 Jul 30; 287():205-213. PubMed ID: 30857691
    [Abstract] [Full Text] [Related]

  • 13. Single-atom Fe catalytic amplification-gold nanosol SERS/RRS aptamer as platform for the quantification of trace pollutants.
    Li D, Li C, Wang H, Li J, Zhao Y, Jiang X, Wen G, Liang A, Jiang Z.
    Mikrochim Acta; 2021 Apr 24; 188(5):175. PubMed ID: 33893886
    [Abstract] [Full Text] [Related]

  • 14. A portable optic fiber aptasensor for sensitive, specific and rapid detection of bisphenol-A in water samples.
    Yildirim N, Long F, He M, Shi HC, Gu AZ.
    Environ Sci Process Impacts; 2014 May 24; 16(6):1379-86. PubMed ID: 24788953
    [Abstract] [Full Text] [Related]

  • 15. Design of ultrasensitive bisphenol A-aptamer based on platinum nanoparticles loading to polyethyleneimine-functionalized carbon nanotubes.
    Derikvandi Z, Abbasi AR, Roushani M, Derikvand Z, Azadbakht A.
    Anal Biochem; 2016 Nov 01; 512():47-57. PubMed ID: 27307183
    [Abstract] [Full Text] [Related]

  • 16. Building an aptamer/graphene oxide FRET biosensor for one-step detection of bisphenol A.
    Zhu Y, Cai Y, Xu L, Zheng L, Wang L, Qi B, Xu C.
    ACS Appl Mater Interfaces; 2015 Apr 15; 7(14):7492-6. PubMed ID: 25799081
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Aptamer-based electrochemical biosensor by using Au-Pt nanoparticles, carbon nanotubes and acriflavine platform.
    Beiranvand ZS, Abbasi AR, Dehdashtian S, Karimi Z, Azadbakht A.
    Anal Biochem; 2017 Feb 01; 518():35-45. PubMed ID: 27789234
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Trace analysis of mercury(II) ions using aptamer-modified Au/Ag core-shell nanoparticles and SERS spectroscopy in a microdroplet channel.
    Chung E, Gao R, Ko J, Choi N, Lim DW, Lee EK, Chang SI, Choo J.
    Lab Chip; 2013 Jan 21; 13(2):260-6. PubMed ID: 23208150
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.