These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
201 related items for PubMed ID: 25313646
1. Microbially driven Fenton reaction for degradation of the widespread environmental contaminant 1,4-dioxane. Sekar R, DiChristina TJ. Environ Sci Technol; 2014 Nov 04; 48(21):12858-67. PubMed ID: 25313646 [Abstract] [Full Text] [Related]
2. Simultaneous Transformation of Commingled Trichloroethylene, Tetrachloroethylene, and 1,4-Dioxane by a Microbially Driven Fenton Reaction in Batch Liquid Cultures. Sekar R, Taillefert M, DiChristina TJ. Appl Environ Microbiol; 2016 Nov 01; 82(21):6335-6343. PubMed ID: 27542932 [Abstract] [Full Text] [Related]
3. Degradation of the recalcitrant oil spill components anthracene and pyrene by a microbially driven Fenton reaction. Sekar R, DiChristina TJ. FEMS Microbiol Lett; 2017 Nov 15; 364(21):. PubMed ID: 29029043 [Abstract] [Full Text] [Related]
4. Resistance of perfluorooctanoic acid to degradation by the microbially driven Fenton reaction. Toporek Y, Shin HD, DiChristina TJ. FEMS Microbiol Lett; 2022 Jan 25; 368(21-24):. PubMed ID: 34918061 [Abstract] [Full Text] [Related]
5. Degradation of 2, 2', 4, 4'-Tetrabrominated diphenyl ether (BDE-47) via the Fenton reaction driven by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. Peng Z, Shi M, Xia K, Dong Y, Shi L. Environ Pollut; 2020 Nov 25; 266(Pt 1):115413. PubMed ID: 32828026 [Abstract] [Full Text] [Related]
6. Mechanistic insights into sulfadimethoxine degradation via microbially driven Fenton reactions. Zhang L, Wang Y, Chen X, Hang X, Liu Y. J Hazard Mater; 2024 Sep 15; 477():135260. PubMed ID: 39047553 [Abstract] [Full Text] [Related]
7. Mechanisms of polystyrene microplastic degradation by the microbially driven Fenton reaction. Yang Y, Chen J, Chen Z, Yu Z, Xue J, Luan T, Chen S, Zhou S. Water Res; 2022 Sep 01; 223():118979. PubMed ID: 35994787 [Abstract] [Full Text] [Related]
8. Decomposition of 1,4-dioxane by advanced oxidation and biochemical process. Kim CG, Seo HJ, Lee BR. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2006 Sep 01; 41(4):599-611. PubMed ID: 16779934 [Abstract] [Full Text] [Related]
9. Oxidation kinetics of degradation of 1,4-dioxane in aqueous solution by H2O2/Fe(II) system. Ghosh P, Samanta AN, Ray S. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010 Sep 01; 45(4):395-9. PubMed ID: 20390884 [Abstract] [Full Text] [Related]
10. Practical applications of the Fenton reaction to the removal of chlorinated aromatic pollutants. Oxidative degradation of 2,4-dichlorophenol. Detomaso A, Lopez A, Lovecchio G, Mascolo G, Curci R. Environ Sci Pollut Res Int; 2003 Sep 01; 10(6):379-84. PubMed ID: 14690028 [Abstract] [Full Text] [Related]
11. Photo degradation of methyl orange an azo dye by advanced Fenton process using zero valent metallic iron: influence of various reaction parameters and its degradation mechanism. Gomathi Devi L, Girish Kumar S, Mohan Reddy K, Munikrishnappa C. J Hazard Mater; 2009 May 30; 164(2-3):459-67. PubMed ID: 18805635 [Abstract] [Full Text] [Related]
12. Enhanced Fe(III)-mediated Fenton oxidation of atrazine in the presence of functionalized multi-walled carbon nanotubes. Yang Z, Yu A, Shan C, Gao G, Pan B. Water Res; 2018 Jun 15; 137():37-46. PubMed ID: 29525426 [Abstract] [Full Text] [Related]
13. Carbon isotope effects associated with Fenton-like degradation of toluene: potential for differentiation of abiotic and biotic degradation. Ahad JM, Slater GF. Sci Total Environ; 2008 Aug 15; 401(1-3):194-8. PubMed ID: 18466958 [Abstract] [Full Text] [Related]
14. Optimization of the Fenton treatment of 1,4-dioxane and on-line FTIR monitoring of the reaction. Merayo N, Hermosilla D, Cortijo L, Blanco Á. J Hazard Mater; 2014 Mar 15; 268():102-9. PubMed ID: 24473402 [Abstract] [Full Text] [Related]
15. A Fenton-like degradation mechanism for 1,4-dioxane using zero-valent iron (Fe0) and UV light. Son HS, Im JK, Zoh KD. Water Res; 2009 Mar 15; 43(5):1457-63. PubMed ID: 19131086 [Abstract] [Full Text] [Related]
16. Inhibition of BPA degradation by serum as a hydroxyl radical scavenger and an Fe trapping agent in Fenton process. Sajiki J, Masumizu T. Chemosphere; 2004 Oct 15; 57(4):241-52. PubMed ID: 15312722 [Abstract] [Full Text] [Related]
17. Effects of iron type in Fenton reaction on mineralization and biodegradability enhancement of hazardous organic compounds. Khan E, Wirojanagud W, Sermsai N. J Hazard Mater; 2009 Jan 30; 161(2-3):1024-34. PubMed ID: 18502575 [Abstract] [Full Text] [Related]
18. The impact of chlorinated solvent co-contaminants on the biodegradation kinetics of 1,4-dioxane. Mahendra S, Grostern A, Alvarez-Cohen L. Chemosphere; 2013 Mar 30; 91(1):88-92. PubMed ID: 23237300 [Abstract] [Full Text] [Related]
19. Homogeneous degradation of 1,2,9,10-tetrachlorodecane in aqueous solutions using hydrogen peroxide, iron and UV light. El-Morsi TM, Emara MM, Abd El Bary HM, Abd-El-Aziz AS, Friesen KJ. Chemosphere; 2002 Apr 30; 47(3):343-8. PubMed ID: 11996156 [Abstract] [Full Text] [Related]
20. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent. Burbano AA, Dionysiou DD, Suidan MT, Richardson TL. Water Res; 2005 Jan 30; 39(1):107-18. PubMed ID: 15607170 [Abstract] [Full Text] [Related] Page: [Next] [New Search]