These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
701 related items for PubMed ID: 25314022
1. Device perspective for black phosphorus field-effect transistors: contact resistance, ambipolar behavior, and scaling. Du Y, Liu H, Deng Y, Ye PD. ACS Nano; 2014 Oct 28; 8(10):10035-42. PubMed ID: 25314022 [Abstract] [Full Text] [Related]
2. Switching mechanism in single-layer molybdenum disulfide transistors: an insight into current flow across Schottky barriers. Liu H, Si M, Deng Y, Neal AT, Du Y, Najmaei S, Ajayan PM, Lou J, Ye PD. ACS Nano; 2014 Jan 28; 8(1):1031-8. PubMed ID: 24351134 [Abstract] [Full Text] [Related]
3. Ambipolar phosphorene field effect transistor. Das S, Demarteau M, Roelofs A. ACS Nano; 2014 Nov 25; 8(11):11730-8. PubMed ID: 25329532 [Abstract] [Full Text] [Related]
4. Low Schottky barrier black phosphorus field-effect devices with ferromagnetic tunnel contacts. Kamalakar MV, Madhushankar BN, Dankert A, Dash SP. Small; 2015 May 13; 11(18):2209-16. PubMed ID: 25586013 [Abstract] [Full Text] [Related]
7. Field effect transistors with current saturation and voltage gain in ultrathin ReS2. Corbet CM, McClellan C, Rai A, Sonde SS, Tutuc E, Banerjee SK. ACS Nano; 2015 Jan 27; 9(1):363-70. PubMed ID: 25514177 [Abstract] [Full Text] [Related]
11. Fundamental Limits on the Subthreshold Slope in Schottky Source/Drain Black Phosphorus Field-Effect Transistors. Haratipour N, Namgung S, Oh SH, Koester SJ. ACS Nano; 2016 Mar 22; 10(3):3791-800. PubMed ID: 26914179 [Abstract] [Full Text] [Related]
12. Schottky Barriers in Bilayer Phosphorene Transistors. Pan Y, Dan Y, Wang Y, Ye M, Zhang H, Quhe R, Zhang X, Li J, Guo W, Yang L, Lu J. ACS Appl Mater Interfaces; 2017 Apr 12; 9(14):12694-12705. PubMed ID: 28322554 [Abstract] [Full Text] [Related]
13. Improving Performances of In-Plane Transition-Metal Dichalcogenide Schottky Barrier Field-Effect Transistors. Fan ZQ, Jiang XW, Chen J, Luo JW. ACS Appl Mater Interfaces; 2018 Jun 06; 10(22):19271-19277. PubMed ID: 29737827 [Abstract] [Full Text] [Related]
14. Black Phosphorus Field-Effect Transistors with Work Function Tunable Contacts. Ma Y, Shen C, Zhang A, Chen L, Liu Y, Chen J, Liu Q, Li Z, Amer MR, Nilges T, Abbas AN, Zhou C. ACS Nano; 2017 Jul 25; 11(7):7126-7133. PubMed ID: 28653827 [Abstract] [Full Text] [Related]
15. Enhancing ambipolar carrier transport of black phosphorus field-effect transistors with Ni-P alloy contacts. Park H, Kim J. Phys Chem Chem Phys; 2018 Sep 12; 20(35):22439-22444. PubMed ID: 30062335 [Abstract] [Full Text] [Related]
16. Black Phosphorus Transistors with Near Band Edge Contact Schottky Barrier. Ling ZP, Sakar S, Mathew S, Zhu JT, Gopinadhan K, Venkatesan T, Ang KW. Sci Rep; 2015 Dec 15; 5():18000. PubMed ID: 26667402 [Abstract] [Full Text] [Related]
18. Impact of Contact on the Operation and Performance of Back-Gated Monolayer MoS2 Field-Effect-Transistors. Liu W, Sarkar D, Kang J, Cao W, Banerjee K. ACS Nano; 2015 Aug 25; 9(8):7904-12. PubMed ID: 26039221 [Abstract] [Full Text] [Related]
20. Unipolar n-Type Black Phosphorus Transistors with Low Work Function Contacts. Wang CH, Incorvia JAC, McClellan CJ, Yu AC, Mleczko MJ, Pop E, Wong HP. Nano Lett; 2018 May 09; 18(5):2822-2827. PubMed ID: 29620900 [Abstract] [Full Text] [Related] Page: [Next] [New Search]