These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


659 related items for PubMed ID: 25319350

  • 1. Poly-ε-caprolactone composite scaffolds for bone repair.
    Di Liddo R, Paganin P, Lora S, Dalzoppo D, Giraudo C, Miotto D, Tasso A, Barbon S, Artico M, Bianchi E, Parnigotto PP, Conconi MT, Grandi C.
    Int J Mol Med; 2014 Dec; 34(6):1537-46. PubMed ID: 25319350
    [Abstract] [Full Text] [Related]

  • 2. Porous alginate/poly(ε-caprolactone) scaffolds: preparation, characterization and in vitro biological activity.
    Grandi C, Di Liddo R, Paganin P, Lora S, Dalzoppo D, Feltrin G, Giraudo C, Tommasini M, Conconi MT, Parnigotto PP.
    Int J Mol Med; 2011 Mar; 27(3):455-67. PubMed ID: 21206967
    [Abstract] [Full Text] [Related]

  • 3. Osteoinduction and proliferation of bone-marrow stromal cells in three-dimensional poly (ε-caprolactone)/ hydroxyapatite/collagen scaffolds.
    Wang T, Yang X, Qi X, Jiang C.
    J Transl Med; 2015 May 08; 13():152. PubMed ID: 25952675
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering.
    Arafat MT, Lam CX, Ekaputra AK, Wong SY, Li X, Gibson I.
    Acta Biomater; 2011 Feb 08; 7(2):809-20. PubMed ID: 20849985
    [Abstract] [Full Text] [Related]

  • 6. Synergistic effect of scaffold composition and dynamic culturing environment in multilayered systems for bone tissue engineering.
    Rodrigues MT, Martins A, Dias IR, Viegas CA, Neves NM, Gomes ME, Reis RL.
    J Tissue Eng Regen Med; 2012 Nov 08; 6(10):e24-30. PubMed ID: 22451140
    [Abstract] [Full Text] [Related]

  • 7. Mimicking nanofibrous hybrid bone substitute for mesenchymal stem cells differentiation into osteogenesis.
    Gandhimathi C, Venugopal J, Ravichandran R, Sundarrajan S, Suganya S, Ramakrishna S.
    Macromol Biosci; 2013 Jun 08; 13(6):696-706. PubMed ID: 23529905
    [Abstract] [Full Text] [Related]

  • 8. Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering.
    Hokmabad VR, Davaran S, Aghazadeh M, Rahbarghazi R, Salehi R, Ramazani A.
    J Biomater Appl; 2019 Mar 08; 33(8):1128-1144. PubMed ID: 30651055
    [Abstract] [Full Text] [Related]

  • 9. Selective laser sintering fabrication of nano-hydroxyapatite/poly-ε-caprolactone scaffolds for bone tissue engineering applications.
    Xia Y, Zhou P, Cheng X, Xie Y, Liang C, Li C, Xu S.
    Int J Nanomedicine; 2013 Mar 08; 8():4197-213. PubMed ID: 24204147
    [Abstract] [Full Text] [Related]

  • 10. Proliferation and osteogenic differentiation of human bone marrow stromal cells on alginate-gelatine-hydroxyapatite scaffolds with anisotropic pore structure.
    Bernhardt A, Despang F, Lode A, Demmler A, Hanke T, Gelinsky M.
    J Tissue Eng Regen Med; 2009 Jan 08; 3(1):54-62. PubMed ID: 19012272
    [Abstract] [Full Text] [Related]

  • 11. Injectable Chitin-Poly(ε-caprolactone)/Nanohydroxyapatite Composite Microgels Prepared by Simple Regeneration Technique for Bone Tissue Engineering.
    Arun Kumar R, Sivashanmugam A, Deepthi S, Iseki S, Chennazhi KP, Nair SV, Jayakumar R.
    ACS Appl Mater Interfaces; 2015 May 13; 7(18):9399-409. PubMed ID: 25893690
    [Abstract] [Full Text] [Related]

  • 12. Solvent-free polymer/bioceramic scaffolds for bone tissue engineering: fabrication, analysis, and cell growth.
    Minton J, Janney C, Akbarzadeh R, Focke C, Subramanian A, Smith T, McKinney J, Liu J, Schmitz J, James PF, Yousefi AM.
    J Biomater Sci Polym Ed; 2014 May 13; 25(16):1856-74. PubMed ID: 25178801
    [Abstract] [Full Text] [Related]

  • 13. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration.
    Thadavirul N, Pavasant P, Supaphol P.
    J Biomater Sci Polym Ed; 2014 May 13; 25(17):1986-2008. PubMed ID: 25291106
    [Abstract] [Full Text] [Related]

  • 14. Chondrogenic differentiation of bone marrow-derived mesenchymal stromal cells via biomimetic and bioactive poly-ε-caprolactone scaffolds.
    Schagemann JC, Paul S, Casper ME, Rohwedel J, Kramer J, Kaps C, Mittelstaedt H, Fehr M, Reinholz GG.
    J Biomed Mater Res A; 2013 Jun 13; 101(6):1620-8. PubMed ID: 23184542
    [Abstract] [Full Text] [Related]

  • 15. Adhesion, proliferation and osteogenic differentiation of mesenchymal stem cells in 3D printed poly-ε-caprolactone/hydroxyapatite scaffolds combined with bone marrow clots.
    Zheng P, Yao Q, Mao F, Liu N, Xu Y, Wei B, Wang L.
    Mol Med Rep; 2017 Oct 13; 16(4):5078-5084. PubMed ID: 28849142
    [Abstract] [Full Text] [Related]

  • 16. Conditioned media enhance osteogenic differentiation on poly(L-lactide-co-epsilon-caprolactone)/hydroxyapatite scaffolds and chondrogenic differentiation in alginate.
    Maxson S, Burg KJ.
    J Biomater Sci Polym Ed; 2010 Oct 13; 21(11):1441-58. PubMed ID: 20534195
    [Abstract] [Full Text] [Related]

  • 17. Preparation and characterization of a three-dimensional printed scaffold based on a functionalized polyester for bone tissue engineering applications.
    Seyednejad H, Gawlitta D, Dhert WJ, van Nostrum CF, Vermonden T, Hennink WE.
    Acta Biomater; 2011 May 13; 7(5):1999-2006. PubMed ID: 21241834
    [Abstract] [Full Text] [Related]

  • 18. Direct deposited porous scaffolds of calcium phosphate cement with alginate for drug delivery and bone tissue engineering.
    Lee GS, Park JH, Shin US, Kim HW.
    Acta Biomater; 2011 Aug 13; 7(8):3178-86. PubMed ID: 21539944
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 33.