These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


659 related items for PubMed ID: 25319350

  • 21. Fabrication of bioactive composite scaffolds by electrospinning for bone regeneration.
    Nandakumar A, Fernandes H, de Boer J, Moroni L, Habibovic P, van Blitterswijk CA.
    Macromol Biosci; 2010 Nov 10; 10(11):1365-73. PubMed ID: 20799255
    [Abstract] [Full Text] [Related]

  • 22. Biomineralized hydroxyapatite nanoclay composite scaffolds with polycaprolactone for stem cell-based bone tissue engineering.
    Ambre AH, Katti DR, Katti KS.
    J Biomed Mater Res A; 2015 Jun 10; 103(6):2077-101. PubMed ID: 25331212
    [Abstract] [Full Text] [Related]

  • 23. In vitro osteogenic induction of human marrow-derived mesenchymal stem cells by PCL fibrous scaffolds containing dexamethazone-loaded chitosan microspheres.
    Omidvar N, Ganji F, Eslaminejad MB.
    J Biomed Mater Res A; 2016 Jul 10; 104(7):1657-67. PubMed ID: 26916786
    [Abstract] [Full Text] [Related]

  • 24. Osteogenic differentiation of bone marrow stromal cells on poly(epsilon-caprolactone) nanofiber scaffolds.
    Ruckh TT, Kumar K, Kipper MJ, Popat KC.
    Acta Biomater; 2010 Aug 10; 6(8):2949-59. PubMed ID: 20144747
    [Abstract] [Full Text] [Related]

  • 25. The efficacy of polycaprolactone/hydroxyapatite scaffold in combination with mesenchymal stem cells for bone tissue engineering.
    Chuenjitkuntaworn B, Osathanon T, Nowwarote N, Supaphol P, Pavasant P.
    J Biomed Mater Res A; 2016 Jan 10; 104(1):264-71. PubMed ID: 26362586
    [Abstract] [Full Text] [Related]

  • 26. Osteogenesis and angiogenesis induced by porous β-CaSiO(3)/PDLGA composite scaffold via activation of AMPK/ERK1/2 and PI3K/Akt pathways.
    Wang C, Lin K, Chang J, Sun J.
    Biomaterials; 2013 Jan 10; 34(1):64-77. PubMed ID: 23069715
    [Abstract] [Full Text] [Related]

  • 27. Nanocalcium-deficient hydroxyapatite-poly (e-caprolactone)-polyethylene glycol-poly (e-caprolactone) composite scaffolds.
    Wang Z, Li M, Yu B, Cao L, Yang Q, Su J.
    Int J Nanomedicine; 2012 Jan 10; 7():3123-31. PubMed ID: 22848159
    [Abstract] [Full Text] [Related]

  • 28. Differences between in vitro viability and differentiation and in vivo bone-forming efficacy of human mesenchymal stem cells cultured on PCL-TCP scaffolds.
    Rai B, Lin JL, Lim ZX, Guldberg RE, Hutmacher DW, Cool SM.
    Biomaterials; 2010 Nov 10; 31(31):7960-70. PubMed ID: 20688388
    [Abstract] [Full Text] [Related]

  • 29. Development of an osteoconductive PCL-PDIPF-hydroxyapatite composite scaffold for bone tissue engineering.
    Fernandez JM, Molinuevo MS, Cortizo MS, Cortizo AM.
    J Tissue Eng Regen Med; 2011 Jun 10; 5(6):e126-35. PubMed ID: 21312338
    [Abstract] [Full Text] [Related]

  • 30. Preparation and characterization of (PCL-crosslinked-PEG)/hydroxyapatite as bone tissue engineering scaffolds.
    Koupaei N, Karkhaneh A, Daliri Joupari M.
    J Biomed Mater Res A; 2015 Dec 10; 103(12):3919-26. PubMed ID: 26015080
    [Abstract] [Full Text] [Related]

  • 31. Solid free-form fabrication-based PCL/HA scaffolds fabricated with a multi-head deposition system for bone tissue engineering.
    Kim JY, Lee TJ, Cho DW, Kim BS.
    J Biomater Sci Polym Ed; 2010 Dec 10; 21(6-7):951-62. PubMed ID: 20482995
    [Abstract] [Full Text] [Related]

  • 32. Enhanced osteogenic proliferation and differentiation of human adipose-derived stem cells on a porous n-HA/PGS-M composite scaffold.
    Wang Y, Sun N, Zhang Y, Zhao B, Zhang Z, Zhou X, Zhou Y, Liu H, Zhang Y, Liu J.
    Sci Rep; 2019 May 28; 9(1):7960. PubMed ID: 31138861
    [Abstract] [Full Text] [Related]

  • 33. Osteogenic potentials in canine mesenchymal stem cells: unraveling the efficacy of polycaprolactone/hydroxyapatite scaffolds in veterinary bone regeneration.
    Taephatthanasagon T, Purbantoro SD, Rodprasert W, Pathanachai K, Charoenlertkul P, Mahanonda R, Sa-Ard-Lam N, Kuncorojakti S, Soedarmanto A, Jamilah NS, Osathanon T, Sawangmake C, Rattanapuchpong S.
    BMC Vet Res; 2024 Sep 09; 20(1):403. PubMed ID: 39251976
    [Abstract] [Full Text] [Related]

  • 34. Biomimetic hybrid nanofibrous substrates for mesenchymal stem cells differentiation into osteogenic cells.
    Gandhimathi C, Venugopal JR, Tham AY, Ramakrishna S, Kumar SD.
    Mater Sci Eng C Mater Biol Appl; 2015 Apr 09; 49():776-785. PubMed ID: 25687008
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. The immunogenic reaction and bone defect repair function of ε-poly-L-lysine (EPL)-coated nanoscale PCL/HA scaffold in rabbit calvarial bone defect.
    Tian B, Wang N, Jiang Q, Tian L, Hu L, Zhang Z.
    J Mater Sci Mater Med; 2021 Jun 07; 32(6):63. PubMed ID: 34097140
    [Abstract] [Full Text] [Related]

  • 37. The osteogenic properties of CaP/silk composite scaffolds.
    Zhang Y, Wu C, Friis T, Xiao Y.
    Biomaterials; 2010 Apr 07; 31(10):2848-56. PubMed ID: 20071025
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40. Bone differentiation of marrow-derived mesenchymal stem cells using beta-tricalcium phosphate-alginate-gelatin hybrid scaffolds.
    Eslaminejad MB, Mirzadeh H, Mohamadi Y, Nickmahzar A.
    J Tissue Eng Regen Med; 2007 Apr 07; 1(6):417-24. PubMed ID: 18247428
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 33.