These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Bioleaching of metals from steel slag by Acidithiobacillus thiooxidans culture supernatant. Hocheng H, Su C, Jadhav UU. Chemosphere; 2014 Dec; 117():652-7. PubMed ID: 25461931 [Abstract] [Full Text] [Related]
5. Environmentally friendly recovery of valuable metals from spent coin cells through two-step bioleaching using Acidithiobacillus thiooxidans. Naseri T, Bahaloo-Horeh N, Mousavi SM. J Environ Manage; 2019 Apr 01; 235():357-367. PubMed ID: 30708273 [Abstract] [Full Text] [Related]
6. Bioleaching of metals from spent refinery petroleum catalyst using moderately thermophilic bacteria: effect of particle size. Srichandan H, Singh S, Pathak A, Kim DJ, Lee SW, Heyes G. J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014 Apr 01; 49(7):807-18. PubMed ID: 24679088 [Abstract] [Full Text] [Related]
7. Optimization of kinetics and operating parameters for the bioleaching of heavy metals from sewage sludge, using co-inoculation of two Acidithiobacillus species. Li H, Ye M, Zheng L, Xu Y, Sun S, Du Q, Zhong Y, Ye S, Zhang D. Water Sci Technol; 2018 May 01; 2017(2):390-403. PubMed ID: 29851391 [Abstract] [Full Text] [Related]
8. Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles. Pradhan D, Mishra D, Kim DJ, Ahn JG, Chaudhury GR, Lee SW. J Hazard Mater; 2010 Mar 15; 175(1-3):267-73. PubMed ID: 19879686 [Abstract] [Full Text] [Related]
11. The role of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in arsenic bioleaching from soil. Ko MS, Park HS, Kim KW, Lee JU. Environ Geochem Health; 2013 Dec 15; 35(6):727-33. PubMed ID: 23709230 [Abstract] [Full Text] [Related]
12. Dissolution kinetics of spent petroleum catalyst using sulfur oxidizing acidophilic microorganisms. Mishra D, Ahn JG, Kim DJ, Roychaudhury G, Ralph DE. J Hazard Mater; 2009 Aug 15; 167(1-3):1231-6. PubMed ID: 19286311 [Abstract] [Full Text] [Related]
14. Bioleaching of spent refinery processing catalyst using Aspergillus niger with high-yield oxalic acid. Santhiya D, Ting YP. J Biotechnol; 2005 Mar 16; 116(2):171-84. PubMed ID: 15664081 [Abstract] [Full Text] [Related]
15. Feasibility of bioleaching integrated with a chemical oxidation process for improved leaching of valuable metals from refinery spent hydroprocessing catalyst. Pathak A, Rana MS, Al-Sheeha H, Navvmani R, Al-Enezi HM, Al-Sairafi S, Mishra J. Environ Sci Pollut Res Int; 2022 May 16; 29(23):34288-34301. PubMed ID: 35038087 [Abstract] [Full Text] [Related]
17. Influence of initial pH on bioleaching of heavy metals from contaminated soil employing indigenous Acidithiobacillus thiooxidans. Kumar RN, Nagendran R. Chemosphere; 2007 Jan 16; 66(9):1775-81. PubMed ID: 16979697 [Abstract] [Full Text] [Related]
18. Bioleaching of spent hydrotreating catalyst by acidophilic thermophile Acidianus brierleyi: Leaching mechanism and effect of decoking. Bharadwaj A, Ting YP. Bioresour Technol; 2013 Feb 16; 130():673-80. PubMed ID: 23334026 [Abstract] [Full Text] [Related]
19. Bioleaching of spent hydro-processing catalyst using acidophilic bacteria and its kinetics aspect. Mishra D, Kim DJ, Ralph DE, Ahn JG, Rhee YH. J Hazard Mater; 2008 Apr 15; 152(3):1082-91. PubMed ID: 17825485 [Abstract] [Full Text] [Related]