These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
264 related items for PubMed ID: 25323204
21. Ultrasensitive detection of mRNA extracted from cancerous cells achieved by DNA rotaxane-based cross-rolling circle amplification. Bi S, Cui Y, Li L. Analyst; 2013 Jan 07; 138(1):197-203. PubMed ID: 23148205 [Abstract] [Full Text] [Related]
22. A cascade signal amplification strategy for sensitive and label-free DNA detection based on Exo III-catalyzed recycling coupled with rolling circle amplification. Liu X, Xue Q, Ding Y, Zhu J, Wang L, Jiang W. Analyst; 2014 Jun 07; 139(11):2884-9. PubMed ID: 24752174 [Abstract] [Full Text] [Related]
23. DNA nanostructures from palindromic rolling circle amplification for the fluorescent detection of cancer-related microRNAs. Xu H, Zhang S, Ouyang C, Wang Z, Wu D, Liu Y, Jiang Y, Wu ZS. Talanta; 2019 Jan 15; 192():175-181. PubMed ID: 30348375 [Abstract] [Full Text] [Related]
24. An electrochemical biosensor to simultaneously detect VEGF and PSA for early prostate cancer diagnosis based on graphene oxide/ssDNA/PLLA nanoparticles. Pan LH, Kuo SH, Lin TY, Lin CW, Fang PY, Yang HW. Biosens Bioelectron; 2017 Mar 15; 89(Pt 1):598-605. PubMed ID: 26868935 [Abstract] [Full Text] [Related]
25. Analytically Sensitive Protein Detection in Microtiter Plates by Proximity Ligation with Rolling Circle Amplification. Ebai T, Souza de Oliveira FM, Löf L, Wik L, Schweiger C, Larsson A, Keilholtz U, Haybaeck J, Landegren U, Kamali-Moghaddam M. Clin Chem; 2017 Sep 15; 63(9):1497-1505. PubMed ID: 28667186 [Abstract] [Full Text] [Related]
26. Synthesis and stretching of rolling circle amplification products in a flow-through system. Reiss E, Hölzel R, Bier FF. Small; 2009 Oct 15; 5(20):2316-22. PubMed ID: 19492351 [Abstract] [Full Text] [Related]
27. Increasingly branched rolling circle amplification for the cancer gene detection. Li H, Xu J, Wang Z, Wu ZS, Jia L. Biosens Bioelectron; 2016 Dec 15; 86():1067-1073. PubMed ID: 27569300 [Abstract] [Full Text] [Related]
30. Ligation-rolling circle amplification combined with γ-cyclodextrin mediated stemless molecular beacon for sensitive and specific genotyping of single-nucleotide polymorphism. Zou Z, Qing Z, He X, Wang K, He D, Shi H, Yang X, Qing T, Yang X. Talanta; 2014 Jul 15; 125():306-12. PubMed ID: 24840448 [Abstract] [Full Text] [Related]
32. An isothermal and sensitive nucleic acids assay by target sequence recycled rolling circle amplification. Long Y, Zhou X, Xing D. Biosens Bioelectron; 2013 Aug 15; 46():102-7. PubMed ID: 23517825 [Abstract] [Full Text] [Related]
35. Coupling of background reduction with rolling circle amplification for highly sensitive protein detection via terminal protection of small molecule-linked DNA. Wang Q, Jiang B, Xie J, Xiang Y, Yuan R, Chai Y. Analyst; 2013 Oct 07; 138(19):5751-6. PubMed ID: 23907287 [Abstract] [Full Text] [Related]
37. Generation of long, fully modified, and serum-resistant oligonucleotides by rolling circle amplification. Hollenstein M. Org Biomol Chem; 2015 Oct 14; 13(38):9820-4. PubMed ID: 26273951 [Abstract] [Full Text] [Related]
38. Terminal protection of small-molecule-linked DNA for sensitive fluorescence detection of protein binding based on nucleic acid amplification. Ou LJ, Wang HB, Chu X. Analyst; 2013 Dec 07; 138(23):7218-23. PubMed ID: 24131014 [Abstract] [Full Text] [Related]