These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


238 related items for PubMed ID: 25324303

  • 1. P2CS: updates of the prokaryotic two-component systems database.
    Ortet P, Whitworth DE, Santaella C, Achouak W, Barakat M.
    Nucleic Acids Res; 2015 Jan; 43(Database issue):D536-41. PubMed ID: 25324303
    [Abstract] [Full Text] [Related]

  • 2. P2CS: a database of prokaryotic two-component systems.
    Barakat M, Ortet P, Whitworth DE.
    Nucleic Acids Res; 2011 Jan; 39(Database issue):D771-6. PubMed ID: 21051349
    [Abstract] [Full Text] [Related]

  • 3. Building interacting partner predictors using co-varying residue pairs between histidine kinase and response regulator pairs of 48 bacterial two-component systems.
    Choi K, Kim S.
    Proteins; 2011 Apr; 79(4):1118-31. PubMed ID: 21246634
    [Abstract] [Full Text] [Related]

  • 4. P2CS: a two-component system resource for prokaryotic signal transduction research.
    Barakat M, Ortet P, Jourlin-Castelli C, Ansaldi M, Méjean V, Whitworth DE.
    BMC Genomics; 2009 Jul 15; 10():315. PubMed ID: 19604365
    [Abstract] [Full Text] [Related]

  • 5. Cross-talk between an orphan response regulator and a noncognate histidine kinase in Streptomyces coelicolor.
    Wang W, Shu D, Chen L, Jiang W, Lu Y.
    FEMS Microbiol Lett; 2009 May 15; 294(2):150-6. PubMed ID: 19341396
    [Abstract] [Full Text] [Related]

  • 6. A genome-wide study of two-component signal transduction systems in eight newly sequenced mutans streptococci strains.
    Song L, Sudhakar P, Wang W, Conrads G, Brock A, Sun J, Wagner-Döbler I, Zeng AP.
    BMC Genomics; 2012 Apr 04; 13():128. PubMed ID: 22475007
    [Abstract] [Full Text] [Related]

  • 7. Evolution of prokaryotic two-component systems: insights from comparative genomics.
    Whitworth DE, Cock PJ.
    Amino Acids; 2009 Sep 04; 37(3):459-66. PubMed ID: 19241119
    [Abstract] [Full Text] [Related]

  • 8. Evolution of prokaryotic two-component system signaling pathways: gene fusions and fissions.
    Cock PJ, Whitworth DE.
    Mol Biol Evol; 2007 Nov 04; 24(11):2355-7. PubMed ID: 17709334
    [Abstract] [Full Text] [Related]

  • 9. Comparative analysis of two-component signal transduction systems of Bacillus cereus, Bacillus thuringiensis and Bacillus anthracis.
    de Been M, Francke C, Moezelaar R, Abee T, Siezen RJ.
    Microbiology (Reading); 2006 Oct 04; 152(Pt 10):3035-3048. PubMed ID: 17005984
    [Abstract] [Full Text] [Related]

  • 10. Two-component systems of the myxobacteria: structure, diversity and evolutionary relationships.
    Whitworth DE, Cock PJA.
    Microbiology (Reading); 2008 Feb 04; 154(Pt 2):360-372. PubMed ID: 18227240
    [Abstract] [Full Text] [Related]

  • 11. Bacterial histidine kinase as signal sensor and transducer.
    Khorchid A, Ikura M.
    Int J Biochem Cell Biol; 2006 Mar 04; 38(3):307-12. PubMed ID: 16242988
    [Abstract] [Full Text] [Related]

  • 12. Evolutionary history of the OmpR/IIIA family of signal transduction two component systems in Lactobacillaceae and Leuconostocaceae.
    Zúñiga M, Gómez-Escoín CL, González-Candelas F.
    BMC Evol Biol; 2011 Feb 01; 11():34. PubMed ID: 21284862
    [Abstract] [Full Text] [Related]

  • 13. Evolution of orphan and atypical histidine kinases and response regulators for microbial signaling diversity.
    Xu G, Yang S.
    Int J Biol Macromol; 2024 Aug 01; 275(Pt 1):133635. PubMed ID: 38964677
    [Abstract] [Full Text] [Related]

  • 14. Comparative genomic analysis of two-component regulatory proteins in Pseudomonas syringae.
    Lavín JL, Kiil K, Resano O, Ussery DW, Oguiza JA.
    BMC Genomics; 2007 Oct 31; 8():397. PubMed ID: 17971244
    [Abstract] [Full Text] [Related]

  • 15. Crosstalk and the evolution of specificity in two-component signaling.
    Rowland MA, Deeds EJ.
    Proc Natl Acad Sci U S A; 2014 Apr 15; 111(15):5550-5. PubMed ID: 24706803
    [Abstract] [Full Text] [Related]

  • 16. Protein engineering of bacterial histidine kinase receptor systems.
    Xie W, Blain KY, Kuo MM, Choe S.
    Protein Pept Lett; 2010 Jul 15; 17(7):867-73. PubMed ID: 20205655
    [Abstract] [Full Text] [Related]

  • 17. How important is the phosphatase activity of sensor kinases?
    Kenney LJ.
    Curr Opin Microbiol; 2010 Apr 15; 13(2):168-76. PubMed ID: 20223700
    [Abstract] [Full Text] [Related]

  • 18. The Nla6S protein of Myxococcus xanthus is the prototype for a new family of bacterial histidine kinases.
    Sarwar Z, Garza AG.
    FEMS Microbiol Lett; 2012 Oct 15; 335(2):86-94. PubMed ID: 22812452
    [Abstract] [Full Text] [Related]

  • 19. Activity-based probe for histidine kinase signaling.
    Wilke KE, Francis S, Carlson EE.
    J Am Chem Soc; 2012 Jun 06; 134(22):9150-3. PubMed ID: 22606938
    [Abstract] [Full Text] [Related]

  • 20. Identification of sensory and signal-transducing domains in two-component signaling systems.
    Galperin MY, Nikolskaya AN.
    Methods Enzymol; 2007 Jun 06; 422():47-74. PubMed ID: 17628134
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.