These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
817 related items for PubMed ID: 25340969
21. Estimating energy expenditure using body-worn accelerometers: a comparison of methods, sensors number and positioning. Altini M, Penders J, Vullers R, Amft O. IEEE J Biomed Health Inform; 2015 Jan; 19(1):219-26. PubMed ID: 24691168 [Abstract] [Full Text] [Related]
30. Measuring reliability and validity of the ActiGraph GT3X accelerometer for children with cerebral palsy: a feasibility study. O'Neil ME, Fragala-Pinkham MA, Forman JL, Trost SG. J Pediatr Rehabil Med; 2014 Jan; 7(3):233-40. PubMed ID: 25260506 [Abstract] [Full Text] [Related]
31. Evaluation of the activPAL accelerometer for physical activity and energy expenditure estimation in a semi-structured setting. Montoye AHK, Pivarnik JM, Mudd LM, Biswas S, Pfeiffer KA. J Sci Med Sport; 2017 Nov; 20(11):1003-1007. PubMed ID: 28483558 [Abstract] [Full Text] [Related]
33. Machine learning for activity recognition: hip versus wrist data. Trost SG, Zheng Y, Wong WK. Physiol Meas; 2014 Nov; 35(11):2183-9. PubMed ID: 25340887 [Abstract] [Full Text] [Related]
34. Raw and Count Data Comparability of Hip-Worn ActiGraph GT3X+ and Link Accelerometers. Montoye AHK, Nelson MB, Bock JM, Imboden MT, Kaminsky LA, Mackintosh KA, McNarry MA, Pfeiffer KA. Med Sci Sports Exerc; 2018 May; 50(5):1103-1112. PubMed ID: 29283934 [Abstract] [Full Text] [Related]
35. Validity of hip-mounted uniaxial accelerometry with heart-rate monitoring vs. triaxial accelerometry in the assessment of free-living energy expenditure in young children: the IDEFICS Validation Study. Ojiambo R, Konstabel K, Veidebaum T, Reilly J, Verbestel V, Huybrechts I, Sioen I, Casajús JA, Moreno LA, Vicente-Rodriguez G, Bammann K, Tubic BM, Marild S, Westerterp K, Pitsiladis YP, IDEFICS Consortium. J Appl Physiol (1985); 2012 Nov; 113(10):1530-6. PubMed ID: 22995396 [Abstract] [Full Text] [Related]
36. Intensity classification accuracy of accelerometer-measured physical activities in Chinese children and youth. Zhu Z, Chen P, Zhuang J. Res Q Exerc Sport; 2013 Dec; 84 Suppl 2():S4-11. PubMed ID: 24527562 [Abstract] [Full Text] [Related]
37. Validation of five minimally obstructive methods to estimate physical activity energy expenditure in young adults in semi-standardized settings. Schneller MB, Pedersen MT, Gupta N, Aadahl M, Holtermann A. Sensors (Basel); 2015 Mar 13; 15(3):6133-51. PubMed ID: 25781506 [Abstract] [Full Text] [Related]
38. Investigating optimal accelerometer placement for energy expenditure prediction in children using a machine learning approach. Mackintosh KA, Montoye AH, Pfeiffer KA, McNarry MA. Physiol Meas; 2016 Oct 13; 37(10):1728-1740. PubMed ID: 27653339 [Abstract] [Full Text] [Related]
39. Triaxial accelerometer output predicts oxygen uptake in adults with Down syndrome. Allred AT, Choi P, Agiovlasitis S. Disabil Rehabil; 2021 Sep 13; 43(18):2602-2609. PubMed ID: 31880164 [Abstract] [Full Text] [Related]
40. Estimating activity and sedentary behavior from an accelerometer on the hip or wrist. Rosenberger ME, Haskell WL, Albinali F, Mota S, Nawyn J, Intille S. Med Sci Sports Exerc; 2013 May 13; 45(5):964-75. PubMed ID: 23247702 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]