These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


817 related items for PubMed ID: 25340969

  • 61.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 62.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 63.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 64.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 65. Estimation of Energy Expenditure for Wheelchair Users Using a Physical Activity Monitoring System.
    Hiremath SV, Intille SS, Kelleher A, Cooper RA, Ding D.
    Arch Phys Med Rehabil; 2016 Jul; 97(7):1146-1153.e1. PubMed ID: 26976800
    [Abstract] [Full Text] [Related]

  • 66. Validity of the Actigraph GT3x and influence of the sensor positioning for the assessment of active energy expenditure during four activities of daily living in stroke subjects.
    Compagnat M, Mandigout S, Chaparro D, Daviet JC, Salle JY.
    Clin Rehabil; 2018 Dec; 32(12):1696-1704. PubMed ID: 30012036
    [Abstract] [Full Text] [Related]

  • 67.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 68. Are Machine Learning Models on Wrist Accelerometry Robust against Differences in Physical Performance among Older Adults?
    Bai C, Wanigatunga AA, Saldana S, Casanova R, Manini TM, Mardini MT.
    Sensors (Basel); 2022 Apr 15; 22(8):. PubMed ID: 35459045
    [Abstract] [Full Text] [Related]

  • 69.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 70.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 71. Reliability of ActiGraph GT3X+ placement location in the estimation of energy expenditure during moderate and high-intensity physical activities in young and older adults.
    Kossi O, Lacroix J, Ferry B, Batcho CS, Julien-Vergonjanne A, Mandigout S.
    J Sports Sci; 2021 Jul 15; 39(13):1489-1496. PubMed ID: 33514289
    [Abstract] [Full Text] [Related]

  • 72.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 73.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 74.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 75. Comparison of four Fitbit and Jawbone activity monitors with a research-grade ActiGraph accelerometer for estimating physical activity and energy expenditure.
    Imboden MT, Nelson MB, Kaminsky LA, Montoye AH.
    Br J Sports Med; 2018 Jul 15; 52(13):844-850. PubMed ID: 28483930
    [Abstract] [Full Text] [Related]

  • 76. Improving energy expenditure estimates from wearable devices: A machine learning approach.
    O'Driscoll R, Turicchi J, Hopkins M, Horgan GW, Finlayson G, Stubbs JR.
    J Sports Sci; 2020 Jul 15; 38(13):1496-1505. PubMed ID: 32252598
    [Abstract] [Full Text] [Related]

  • 77.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 78. Accurate prediction of energy expenditure using a shoe-based activity monitor.
    Sazonova N, Browning RC, Sazonov E.
    Med Sci Sports Exerc; 2011 Jul 15; 43(7):1312-21. PubMed ID: 21131868
    [Abstract] [Full Text] [Related]

  • 79. Validation of the use of Actigraph GT3X accelerometers to estimate energy expenditure in full time manual wheelchair users with spinal cord injury.
    García-Massó X, Serra-Añó P, García-Raffi LM, Sánchez-Pérez EA, López-Pascual J, Gonzalez LM.
    Spinal Cord; 2013 Dec 15; 51(12):898-903. PubMed ID: 23999111
    [Abstract] [Full Text] [Related]

  • 80.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 41.