These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The proximal tubule in the pathophysiology of the diabetic kidney. Vallon V. Am J Physiol Regul Integr Comp Physiol; 2011 May; 300(5):R1009-22. PubMed ID: 21228342 [Abstract] [Full Text] [Related]
5. Pathophysiology of AKI to CKD progression. Sato Y, Takahashi M, Yanagita M. Semin Nephrol; 2020 Mar; 40(2):206-215. PubMed ID: 32303283 [Abstract] [Full Text] [Related]
8. How Acute Kidney Injury Contributes to Renal Fibrosis. Yang L. Adv Exp Med Biol; 2019 Mar; 1165():117-142. PubMed ID: 31399964 [Abstract] [Full Text] [Related]
9. Renal function in diabetic disease models: the tubular system in the pathophysiology of the diabetic kidney. Vallon V, Thomson SC. Annu Rev Physiol; 2012 Mar; 74():351-75. PubMed ID: 22335797 [Abstract] [Full Text] [Related]
10. Growth factor ultrafiltration in experimental diabetic nephropathy contributes to interstitial fibrosis. Wang SN, Hirschberg R. Am J Physiol Renal Physiol; 2000 Apr; 278(4):F554-60. PubMed ID: 10751215 [Abstract] [Full Text] [Related]
11. Suppressions of chronic glomerular injuries and TGF-beta 1 production by HGF in attenuation of murine diabetic nephropathy. Mizuno S, Nakamura T. Am J Physiol Renal Physiol; 2004 Jan; 286(1):F134-43. PubMed ID: 14519594 [Abstract] [Full Text] [Related]
12. Clinical and pathophysiologic aspects of aminoglycoside nephrotoxicity. Humes HD, Weinberg JM, Knauss TC. Am J Kidney Dis; 1982 Jul; 2(1):5-29. PubMed ID: 7048901 [Abstract] [Full Text] [Related]
13. Role of glomerular ultrafiltration of growth factors in progressive interstitial fibrosis in diabetic nephropathy. Wang SN, LaPage J, Hirschberg R. Kidney Int; 2000 Mar; 57(3):1002-14. PubMed ID: 10720953 [Abstract] [Full Text] [Related]
14. Blockade of cysteine-rich protein 61 attenuates renal inflammation and fibrosis after ischemic kidney injury. Lai CF, Lin SL, Chiang WC, Chen YM, Wu VC, Young GH, Ko WJ, Kuo ML, Tsai TJ, Wu KD. Am J Physiol Renal Physiol; 2014 Sep 01; 307(5):F581-92. PubMed ID: 24920753 [Abstract] [Full Text] [Related]
15. Diabetes Aggravates Post-ischaemic Renal Fibrosis through Persistent Activation of TGF-β1 and Shh Signalling. Kim DJ, Kang JM, Park SH, Kwon HK, Song SJ, Moon H, Kim SM, Seo JW, Lee YH, Kim YG, Moon JY, Lee SY, Son Y, Lee SH. Sci Rep; 2017 Dec 01; 7(1):16782. PubMed ID: 29196746 [Abstract] [Full Text] [Related]
16. Hyperglycemia, p53, and mitochondrial pathway of apoptosis are involved in the susceptibility of diabetic models to ischemic acute kidney injury. Peng J, Li X, Zhang D, Chen JK, Su Y, Smith SB, Dong Z. Kidney Int; 2015 Jan 01; 87(1):137-50. PubMed ID: 24963915 [Abstract] [Full Text] [Related]
17. Acute Kidney Injury and Progression of Diabetic Kidney Disease. Yu SM, Bonventre JV. Adv Chronic Kidney Dis; 2018 Mar 01; 25(2):166-180. PubMed ID: 29580581 [Abstract] [Full Text] [Related]
18. Acute Kidney Injury to Chronic Kidney Disease Transition. Fiorentino M, Grandaliano G, Gesualdo L, Castellano G. Contrib Nephrol; 2018 Mar 01; 193():45-54. PubMed ID: 29393158 [Abstract] [Full Text] [Related]
19. Diabetes mellitus does not affect the incidence of acute kidney injury after cardiac surgery; a nested case-control study. Moschopoulou M, Ampatzidou FC, Loutradis C, Boutou A, Koutsogiannidis CP, Drosos GE, Sarafidis PA. J Nephrol; 2016 Dec 01; 29(6):835-845. PubMed ID: 26924544 [Abstract] [Full Text] [Related]