These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


137 related items for PubMed ID: 2534385

  • 1. Genetic analysis of the N transcription antitermination system of phage lambda.
    Friedman DI, Granston AE, Thompson D, Schauer AT, Olson ER.
    Genome; 1989; 31(2):491-6. PubMed ID: 2534385
    [Abstract] [Full Text] [Related]

  • 2. Transcription antitermination: the lambda paradigm updated.
    Friedman DI, Court DL.
    Mol Microbiol; 1995 Oct; 18(2):191-200. PubMed ID: 8709839
    [Abstract] [Full Text] [Related]

  • 3. Identification of functional regions of the Nun transcription termination protein of phage HK022 and the N antitermination protein of phage lambda using hybrid nun-N genes.
    Henthorn KS, Friedman DI.
    J Mol Biol; 1996 Mar 22; 257(1):9-20. PubMed ID: 8632463
    [Abstract] [Full Text] [Related]

  • 4. Action of an RNA site at a distance: role of the nut genetic signal in transcription antitermination by phage-lambda N gene product.
    Whalen WA, Das A.
    New Biol; 1990 Nov 22; 2(11):975-91. PubMed ID: 2151659
    [Abstract] [Full Text] [Related]

  • 5. Mutations of the phage lambda nutL region that prevent the action of Nun, a site-specific transcription termination factor.
    Baron J, Weisberg RA.
    J Bacteriol; 1992 Mar 22; 174(6):1983-9. PubMed ID: 1532174
    [Abstract] [Full Text] [Related]

  • 6. Bacteriophage lambda N-dependent transcription antitermination. Competition for an RNA site may regulate antitermination.
    Patterson TA, Zhang Z, Baker T, Johnson LL, Friedman DI, Court DL.
    J Mol Biol; 1994 Feb 11; 236(1):217-28. PubMed ID: 8107107
    [Abstract] [Full Text] [Related]

  • 7. The alpha subunit of RNA polymerase and transcription antitermination.
    Schauer AT, Cheng SW, Zheng C, St Pierre L, Alessi D, Hidayetoglu DL, Costantino N, Court DL, Friedman DI.
    Mol Microbiol; 1996 Aug 11; 21(4):839-51. PubMed ID: 8878045
    [Abstract] [Full Text] [Related]

  • 8. Transcription-dependent competition for a host factor: the function and optimal sequence of the phage lambda boxA transcription antitermination signal.
    Friedman DI, Olson ER, Johnson LL, Alessi D, Craven MG.
    Genes Dev; 1990 Dec 11; 4(12A):2210-22. PubMed ID: 2148536
    [Abstract] [Full Text] [Related]

  • 9. Antitermination of early transcription in phage HK022. Absence of a phage-encoded antitermination factor.
    Oberto J, Clerget M, Ditto M, Cam K, Weisberg RA.
    J Mol Biol; 1993 Jan 20; 229(2):368-81. PubMed ID: 8429552
    [Abstract] [Full Text] [Related]

  • 10. Evidence that the promoter can influence assembly of antitermination complexes at downstream RNA sites.
    Zhou Y, Shi T, Mozola MA, Olson ER, Henthorn K, Brown S, Gussin GN, Friedman DI.
    J Bacteriol; 2006 Mar 20; 188(6):2222-32. PubMed ID: 16513752
    [Abstract] [Full Text] [Related]

  • 11. Analysis of nutR: a region of phage lambda required for antitermination of transcription.
    Olson ER, Flamm EL, Friedman DI.
    Cell; 1982 Nov 20; 31(1):61-70. PubMed ID: 6218883
    [Abstract] [Full Text] [Related]

  • 12. lambda N antitermination system: functional analysis of phage interactions with the host NusA protein.
    Schauer AT, Carver DL, Bigelow B, Baron LS, Friedman DI.
    J Mol Biol; 1987 Apr 20; 194(4):679-90. PubMed ID: 2821265
    [Abstract] [Full Text] [Related]

  • 13. A quantitative description of the binding states and in vitro function of antitermination protein N of bacteriophage lambda.
    Conant CR, Van Gilst MR, Weitzel SE, Rees WA, von Hippel PH.
    J Mol Biol; 2005 May 20; 348(5):1039-57. PubMed ID: 15854643
    [Abstract] [Full Text] [Related]

  • 14. Bacteriophage lambda N protein alone can induce transcription antitermination in vitro.
    Rees WA, Weitzel SE, Yager TD, Das A, von Hippel PH.
    Proc Natl Acad Sci U S A; 1996 Jan 09; 93(1):342-6. PubMed ID: 8552635
    [Abstract] [Full Text] [Related]

  • 15. Bipartite function of a small RNA hairpin in transcription antitermination in bacteriophage lambda.
    Chattopadhyay S, Garcia-Mena J, DeVito J, Wolska K, Das A.
    Proc Natl Acad Sci U S A; 1995 Apr 25; 92(9):4061-5. PubMed ID: 7732031
    [Abstract] [Full Text] [Related]

  • 16. The nut site of bacteriophage lambda is made of RNA and is bound by transcription antitermination factors on the surface of RNA polymerase.
    Nodwell JR, Greenblatt J.
    Genes Dev; 1991 Nov 25; 5(11):2141-51. PubMed ID: 1834523
    [Abstract] [Full Text] [Related]

  • 17. Transcriptional antitermination.
    Greenblatt J, Nodwell JR, Mason SW.
    Nature; 1993 Jul 29; 364(6436):401-6. PubMed ID: 8332211
    [Abstract] [Full Text] [Related]

  • 18. Regulation of the elongation-termination decision at intrinsic terminators by antitermination protein N of phage lambda.
    Rees WA, Weitzel SE, Das A, von Hippel PH.
    J Mol Biol; 1997 Nov 07; 273(4):797-813. PubMed ID: 9367773
    [Abstract] [Full Text] [Related]

  • 19. Control of transcription processivity in phage lambda: Nus factors strengthen the termination-resistant state of RNA polymerase induced by N antiterminator.
    DeVito J, Das A.
    Proc Natl Acad Sci U S A; 1994 Aug 30; 91(18):8660-4. PubMed ID: 7521531
    [Abstract] [Full Text] [Related]

  • 20. A zinc-binding region in the beta' subunit of RNA polymerase is involved in antitermination of early transcription of phage HK022.
    Clerget M, Jin DJ, Weisberg RA.
    J Mol Biol; 1995 May 12; 248(4):768-80. PubMed ID: 7752239
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.