These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


203 related items for PubMed ID: 25344669

  • 1. Head muscle development.
    Tzahor E.
    Results Probl Cell Differ; 2015; 56():123-42. PubMed ID: 25344669
    [Abstract] [Full Text] [Related]

  • 2. The lateral plate mesoderm: a novel source of skeletal muscle.
    Pu Q, Patel K, Huang R.
    Results Probl Cell Differ; 2015; 56():143-63. PubMed ID: 25344670
    [Abstract] [Full Text] [Related]

  • 3. Craniofacial Muscle Development.
    Michailovici I, Eigler T, Tzahor E.
    Curr Top Dev Biol; 2015; 115():3-30. PubMed ID: 26589919
    [Abstract] [Full Text] [Related]

  • 4. The occipital lateral plate mesoderm is a novel source for vertebrate neck musculature.
    Theis S, Patel K, Valasek P, Otto A, Pu Q, Harel I, Tzahor E, Tajbakhsh S, Christ B, Huang R.
    Development; 2010 Sep 01; 137(17):2961-71. PubMed ID: 20699298
    [Abstract] [Full Text] [Related]

  • 5. Emergence of heart and branchiomeric muscles in cardiopharyngeal mesoderm.
    Lescroart F, Dumas CE, Adachi N, Kelly RG.
    Exp Cell Res; 2022 Jan 01; 410(1):112931. PubMed ID: 34798131
    [Abstract] [Full Text] [Related]

  • 6. Vertebrate cranial mesoderm: developmental trajectory and evolutionary origin.
    Vyas B, Nandkishore N, Sambasivan R.
    Cell Mol Life Sci; 2020 May 01; 77(10):1933-1945. PubMed ID: 31722070
    [Abstract] [Full Text] [Related]

  • 7. Differentiation of avian craniofacial muscles: I. Patterns of early regulatory gene expression and myosin heavy chain synthesis.
    Noden DM, Marcucio R, Borycki AG, Emerson CP.
    Dev Dyn; 1999 Oct 01; 216(2):96-112. PubMed ID: 10536051
    [Abstract] [Full Text] [Related]

  • 8. Cardiopharyngeal mesoderm origins of musculoskeletal and connective tissues in the mammalian pharynx.
    Adachi N, Bilio M, Baldini A, Kelly RG.
    Development; 2020 Feb 03; 147(3):. PubMed ID: 32014863
    [Abstract] [Full Text] [Related]

  • 9. Cranial neural crest cells regulate head muscle patterning and differentiation during vertebrate embryogenesis.
    Rinon A, Lazar S, Marshall H, Büchmann-Møller S, Neufeld A, Elhanany-Tamir H, Taketo MM, Sommer L, Krumlauf R, Tzahor E.
    Development; 2007 Sep 03; 134(17):3065-75. PubMed ID: 17652354
    [Abstract] [Full Text] [Related]

  • 10. Neural crest and the patterning of vertebrate craniofacial muscles.
    Ziermann JM, Diogo R, Noden DM.
    Genesis; 2018 Jun 03; 56(6-7):e23097. PubMed ID: 29659153
    [Abstract] [Full Text] [Related]

  • 11. The del22q11.2 candidate gene Tbx1 regulates branchiomeric myogenesis.
    Kelly RG, Jerome-Majewska LA, Papaioannou VE.
    Hum Mol Genet; 2004 Nov 15; 13(22):2829-40. PubMed ID: 15385444
    [Abstract] [Full Text] [Related]

  • 12. Clonal analysis reveals common lineage relationships between head muscles and second heart field derivatives in the mouse embryo.
    Lescroart F, Kelly RG, Le Garrec JF, Nicolas JF, Meilhac SM, Buckingham M.
    Development; 2010 Oct 15; 137(19):3269-79. PubMed ID: 20823066
    [Abstract] [Full Text] [Related]

  • 13. To roll the eyes and snap a bite - function, development and evolution of craniofacial muscles.
    Schubert FR, Singh AJ, Afoyalan O, Kioussi C, Dietrich S.
    Semin Cell Dev Biol; 2019 Jul 15; 91():31-44. PubMed ID: 29331210
    [Abstract] [Full Text] [Related]

  • 14. An eye on the head: the development and evolution of craniofacial muscles.
    Sambasivan R, Kuratani S, Tajbakhsh S.
    Development; 2011 Jun 15; 138(12):2401-15. PubMed ID: 21610022
    [Abstract] [Full Text] [Related]

  • 15. Mesoderm progenitor cells of common origin contribute to the head musculature and the cardiac outflow tract.
    Tirosh-Finkel L, Elhanany H, Rinon A, Tzahor E.
    Development; 2006 May 15; 133(10):1943-53. PubMed ID: 16624859
    [Abstract] [Full Text] [Related]

  • 16. The molecular setup of the avian head mesoderm and its implication for craniofacial myogenesis.
    Bothe I, Dietrich S.
    Dev Dyn; 2006 Oct 15; 235(10):2845-60. PubMed ID: 16894604
    [Abstract] [Full Text] [Related]

  • 17. Regulation of skeletal muscle development and disease by microRNAs.
    Liu N, Bassel-Duby R.
    Results Probl Cell Differ; 2015 Oct 15; 56():165-90. PubMed ID: 25344671
    [Abstract] [Full Text] [Related]

  • 18. Heart and craniofacial muscle development: a new developmental theme of distinct myogenic fields.
    Tzahor E.
    Dev Biol; 2009 Mar 15; 327(2):273-9. PubMed ID: 19162003
    [Abstract] [Full Text] [Related]

  • 19. Single-cell reconstruction with spatial context of migrating neural crest cells and their microenvironments during vertebrate head and neck formation.
    Morrison JA, McLennan R, Teddy JM, Scott AR, Kasemeier-Kulesa JC, Gogol MM, Kulesa PM.
    Development; 2021 Nov 15; 148(22):. PubMed ID: 35020873
    [Abstract] [Full Text] [Related]

  • 20. Gene regulatory networks and cell lineages that underlie the formation of skeletal muscle.
    Buckingham M.
    Proc Natl Acad Sci U S A; 2017 Jun 06; 114(23):5830-5837. PubMed ID: 28584083
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.