These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


284 related items for PubMed ID: 25350354

  • 1. Predicting genome-scale Arabidopsis-Pseudomonas syringae interactome using domain and interolog-based approaches.
    Sahu SS, Weirick T, Kaundal R.
    BMC Bioinformatics; 2014; 15 Suppl 11(Suppl 11):S13. PubMed ID: 25350354
    [Abstract] [Full Text] [Related]

  • 2. A host-pathogen interactome uncovers phytopathogenic strategies to manipulate plant ABA responses.
    Cao FY, Khan M, Taniguchi M, Mirmiran A, Moeder W, Lumba S, Yoshioka K, Desveaux D.
    Plant J; 2019 Oct; 100(1):187-198. PubMed ID: 31148337
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. The Pseudomonas syringae type III effector tyrosine phosphatase HopAO1 suppresses innate immunity in Arabidopsis thaliana.
    Underwood W, Zhang S, He SY.
    Plant J; 2007 Nov; 52(4):658-72. PubMed ID: 17877704
    [Abstract] [Full Text] [Related]

  • 7. Investigation on the Interaction of Pseudomonas syringae Effector AvrPto with AtRabE1d GTPase.
    Hou X, Gao Y.
    Protein Pept Lett; 2017 Nov; 24(7):661-667. PubMed ID: 28641564
    [Abstract] [Full Text] [Related]

  • 8. Critical assessment and performance improvement of plant-pathogen protein-protein interaction prediction methods.
    Yang S, Li H, He H, Zhou Y, Zhang Z.
    Brief Bioinform; 2019 Jan 18; 20(1):274-287. PubMed ID: 29028906
    [Abstract] [Full Text] [Related]

  • 9. A draft genome sequence of Pseudomonas syringae pv. tomato T1 reveals a type III effector repertoire significantly divergent from that of Pseudomonas syringae pv. tomato DC3000.
    Almeida NF, Yan S, Lindeberg M, Studholme DJ, Schneider DJ, Condon B, Liu H, Viana CJ, Warren A, Evans C, Kemen E, Maclean D, Angot A, Martin GB, Jones JD, Collmer A, Setubal JC, Vinatzer BA.
    Mol Plant Microbe Interact; 2009 Jan 18; 22(1):52-62. PubMed ID: 19061402
    [Abstract] [Full Text] [Related]

  • 10. Decreased abundance of type III secretion system-inducing signals in Arabidopsis mkp1 enhances resistance against Pseudomonas syringae.
    Anderson JC, Wan Y, Kim YM, Pasa-Tolic L, Metz TO, Peck SC.
    Proc Natl Acad Sci U S A; 2014 May 06; 111(18):6846-51. PubMed ID: 24753604
    [Abstract] [Full Text] [Related]

  • 11. The long-term maintenance of a resistance polymorphism through diffuse interactions.
    Karasov TL, Kniskern JM, Gao L, DeYoung BJ, Ding J, Dubiella U, Lastra RO, Nallu S, Roux F, Innes RW, Barrett LG, Hudson RR, Bergelson J.
    Nature; 2014 Aug 28; 512(7515):436-440. PubMed ID: 25043057
    [Abstract] [Full Text] [Related]

  • 12. Computational Systems Biology of Alfalfa - Bacterial Blight Host-Pathogen Interactions: Uncovering the Complex Molecular Networks for Developing Durable Disease Resistant Crop.
    Kataria R, Duhan N, Kaundal R.
    Front Plant Sci; 2021 Aug 28; 12():807354. PubMed ID: 35251063
    [Abstract] [Full Text] [Related]

  • 13. Diverse mechanisms of resistance to Pseudomonas syringae in a thousand natural accessions of Arabidopsis thaliana.
    Velásquez AC, Oney M, Huot B, Xu S, He SY.
    New Phytol; 2017 Jun 28; 214(4):1673-1687. PubMed ID: 28295393
    [Abstract] [Full Text] [Related]

  • 14. The Pseudomonas syringae type III effector AvrRpt2 functions downstream or independently of SA to promote virulence on Arabidopsis thaliana.
    Chen Z, Kloek AP, Cuzick A, Moeder W, Tang D, Innes RW, Klessig DF, McDowell JM, Kunkel BN.
    Plant J; 2004 Feb 28; 37(4):494-504. PubMed ID: 14756766
    [Abstract] [Full Text] [Related]

  • 15. Prediction of protein-protein interactions between Ralstonia solanacearum and Arabidopsis thaliana.
    Li ZG, He F, Zhang Z, Peng YL.
    Amino Acids; 2012 Jun 28; 42(6):2363-71. PubMed ID: 21786137
    [Abstract] [Full Text] [Related]

  • 16. Analysis of the role of the type III effector inventory of Pseudomonas syringae pv. phaseolicola 1448a in interaction with the plant.
    Zumaquero A, Macho AP, Rufián JS, Beuzón CR.
    J Bacteriol; 2010 Sep 28; 192(17):4474-88. PubMed ID: 20601478
    [Abstract] [Full Text] [Related]

  • 17. Convergent targeting of a common host protein-network by pathogen effectors from three kingdoms of life.
    Weßling R, Epple P, Altmann S, He Y, Yang L, Henz SR, McDonald N, Wiley K, Bader KC, Gläßer C, Mukhtar MS, Haigis S, Ghamsari L, Stephens AE, Ecker JR, Vidal M, Jones JD, Mayer KF, Ver Loren van Themaat E, Weigel D, Schulze-Lefert P, Dangl JL, Panstruga R, Braun P.
    Cell Host Microbe; 2014 Sep 10; 16(3):364-75. PubMed ID: 25211078
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Pattern-Triggered Immunity Alters the Transcriptional Regulation of Virulence-Associated Genes and Induces the Sulfur Starvation Response in Pseudomonas syringae pv. tomato DC3000.
    Lovelace AH, Smith A, Kvitko BH.
    Mol Plant Microbe Interact; 2018 Jul 10; 31(7):750-765. PubMed ID: 29460676
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.