These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


215 related items for PubMed ID: 25359316

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. SAM2 encodes the second methionine S-adenosyl transferase in Saccharomyces cerevisiae: physiology and regulation of both enzymes.
    Thomas D, Rothstein R, Rosenberg N, Surdin-Kerjan Y.
    Mol Cell Biol; 1988 Dec; 8(12):5132-9. PubMed ID: 3072475
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. The Improvement of SAM Accumulation by Integrating the Endogenous Methionine Adenosyltransferase Gene SAM2 in Genome of the Industrial Saccharomyces cerevisiae Strain.
    Zhao W, Shi F, Hang B, Huang L, Cai J, Xu Z.
    Appl Biochem Biotechnol; 2016 Mar; 178(6):1263-72. PubMed ID: 26728652
    [Abstract] [Full Text] [Related]

  • 8. Improving methionine and ATP availability by MET6 and SAM2 co-expression combined with sodium citrate feeding enhanced SAM accumulation in Saccharomyces cerevisiae.
    Chen H, Wang Z, Wang Z, Dou J, Zhou C.
    World J Microbiol Biotechnol; 2016 Apr; 32(4):56. PubMed ID: 26925618
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae.
    Sugiyama M, Akase SP, Nakanishi R, Kaneko Y, Harashima S.
    J Biosci Bioeng; 2016 Oct; 122(4):415-20. PubMed ID: 27102264
    [Abstract] [Full Text] [Related]

  • 12. Improvement of d-Lactic Acid Production in Saccharomyces cerevisiae Under Acidic Conditions by Evolutionary and Rational Metabolic Engineering.
    Baek SH, Kwon EY, Bae SJ, Cho BR, Kim SY, Hahn JS.
    Biotechnol J; 2017 Oct; 12(10):. PubMed ID: 28731533
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Metabolic Engineering and Adaptive Evolution for Efficient Production of l-Lactic Acid in Saccharomyces cerevisiae.
    Zhu P, Luo R, Li Y, Chen X.
    Microbiol Spectr; 2022 Dec 21; 10(6):e0227722. PubMed ID: 36354322
    [Abstract] [Full Text] [Related]

  • 15. Mutations in the S-Adenosylmethionine Synthetase Genes SAM1 and SAM2 Differentially Affect Genome Stability in Saccharomyces cerevisiae.
    Hoffert KM, Higginbotham KSP, Gibson JT, Oehrle S, Strome ED.
    Genetics; 2019 Sep 21; 213(1):97-112. PubMed ID: 31320408
    [Abstract] [Full Text] [Related]

  • 16. L-lactic acid production from D-xylose with Candida sonorensis expressing a heterologous lactate dehydrogenase encoding gene.
    Koivuranta KT, Ilmén M, Wiebe MG, Ruohonen L, Suominen P, Penttilä M.
    Microb Cell Fact; 2014 Aug 08; 13():107. PubMed ID: 25104116
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.