These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
219 related items for PubMed ID: 25359453
1. Mutations in cyclodextrin glycosyltransferase from Bacillus circulans enhance β-cyclization activity and β-cyclodextrin production. Huang M, Li C, Gu Z, Cheng L, Hong Y, Li Z. J Agric Food Chem; 2014 Nov 19; 62(46):11209-14. PubMed ID: 25359453 [Abstract] [Full Text] [Related]
2. Asp577 mutations enhance the catalytic efficiency of cyclodextrin glycosyltransferase from Bacillus circulans. Li Z, Huang M, Gu Z, Holler TP, Cheng L, Hong Y, Li C. Int J Biol Macromol; 2016 Feb 19; 83():111-6. PubMed ID: 26608005 [Abstract] [Full Text] [Related]
3. Mutations at calcium binding site III in cyclodextrin glycosyltransferase improve β-cyclodextrin specificity. Ban X, Gu Z, Li C, Huang M, Cheng L, Hong Y, Li Z. Int J Biol Macromol; 2015 May 19; 76():224-9. PubMed ID: 25748847 [Abstract] [Full Text] [Related]
4. Mutations enhance β-cyclodextrin specificity of cyclodextrin glycosyltransferase from Bacillus circulans. Li Z, Ban X, Gu Z, Li C, Huang M, Hong Y, Cheng L. Carbohydr Polym; 2014 Aug 08; 108():112-7. PubMed ID: 24751254 [Abstract] [Full Text] [Related]
5. Mutations at subsite -3 in cyclodextrin glycosyltransferase from Paenibacillus macerans enhancing alpha-cyclodextrin specificity. Li Z, Zhang J, Wang M, Gu Z, Du G, Li J, Wu J, Chen J. Appl Microbiol Biotechnol; 2009 Jun 08; 83(3):483-90. PubMed ID: 19190904 [Abstract] [Full Text] [Related]
6. Calcium ion contribution to thermostability of cyclodextrin glycosyltransferase is closely related to calcium-binding site CaIII. Li C, Ban X, Gu Z, Li Z. J Agric Food Chem; 2013 Sep 18; 61(37):8836-41. PubMed ID: 23968201 [Abstract] [Full Text] [Related]
7. The role of arginine 47 in the cyclization and coupling reactions of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 implications for product inhibition and product specificity. van der Veen BA, Uitdehaag JC, Dijkstra BW, Dijkhuizen L. Eur J Biochem; 2000 Jun 18; 267(12):3432-41. PubMed ID: 10848958 [Abstract] [Full Text] [Related]
8. Leu600 mutations decrease product inhibition of the β-cyclodextrin glycosyltransferase from Bacillus circulans STB01. Chen S, Li Z, Gu Z, Hong Y, Cheng L, Holler TP, Li C. Int J Biol Macromol; 2018 Aug 18; 115():1194-1201. PubMed ID: 29733932 [Abstract] [Full Text] [Related]
9. Maltose binding site 2 mutations affect product inhibition of Bacillus circulans STB01 cyclodextrin glycosyltransferase. Li C, You Y, Zhang Y, Xie X, Xu Q, Gu Z, Ban X, Tang X, Hong Y, Cheng L, Li Z. Int J Biol Macromol; 2021 Apr 01; 175():254-261. PubMed ID: 33561459 [Abstract] [Full Text] [Related]
10. Structural basis of a mutant Y195I α-cyclodextrin glycosyltransferase with switched product specificity from α-cyclodextrin to β-/γ-cyclodextrin. Xie T, Hou Y, Li D, Yue Y, Qian S, Chao Y. J Biotechnol; 2014 Jul 20; 182-183():92-6. PubMed ID: 24637377 [Abstract] [Full Text] [Related]
11. Mutations of Lysine 47 in cyclodextrin glycosyltransferase from Paenibacillus macerans enhance beta-cyclodextrin specificity. Li ZF, Zhang JY, Sun Q, Wang M, Gu ZB, Du GC, Wu J, Chen J. J Agric Food Chem; 2009 Sep 23; 57(18):8386-91. PubMed ID: 19715296 [Abstract] [Full Text] [Related]
12. Variants at position 603 of the CGTase from Bacillus circulans STB01 for reducing product inhibition. Chen S, Li Z, Gu Z, Hong Y, Cheng L, Li C. Int J Biol Macromol; 2019 Sep 01; 136():460-468. PubMed ID: 31207329 [Abstract] [Full Text] [Related]
13. Rational design of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 to increase alpha-cyclodextrin production. van der Veen BA, Uitdehaag JC, Penninga D, van Alebeek GJ, Smith LM, Dijkstra BW, Dijkhuizen L. J Mol Biol; 2000 Mar 03; 296(4):1027-38. PubMed ID: 10686101 [Abstract] [Full Text] [Related]
14. The residue 179 is involved in product specificity of the Bacillus circulans DF 9R cyclodextrin glycosyltransferase. Costa H, Distéfano AJ, Marino-Buslje C, Hidalgo A, Berenguer J, Biscoglio de Jiménez Bonino M, Ferrarotti SA. Appl Microbiol Biotechnol; 2012 Apr 03; 94(1):123-30. PubMed ID: 21993482 [Abstract] [Full Text] [Related]
15. Site-directed mutations in tyrosine 195 of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 affect activity and product specificity. Penninga D, Strokopytov B, Rozeboom HJ, Lawson CL, Dijkstra BW, Bergsma J, Dijkhuizen L. Biochemistry; 1995 Mar 14; 34(10):3368-76. PubMed ID: 7880832 [Abstract] [Full Text] [Related]
16. Polyethylene glycols enhance the thermostability of β-cyclodextrin glycosyltransferase from Bacillus circulans. Li C, Li W, Holler TP, Gu Z, Li Z. Food Chem; 2014 Dec 01; 164():17-22. PubMed ID: 24996299 [Abstract] [Full Text] [Related]
17. Improved thermostability of bacillus circulans cyclodextrin glycosyltransferase by the introduction of a salt bridge. Leemhuis H, Rozeboom HJ, Dijkstra BW, Dijkhuizen L. Proteins; 2004 Jan 01; 54(1):128-34. PubMed ID: 14705029 [Abstract] [Full Text] [Related]
18. Enhanced production of γ-cyclodextrin by optimization of reaction of γ-cyclodextrin glycosyltransferase as well as synchronous use of isoamylase. Wang L, Wu D, Chen J, Wu J. Food Chem; 2013 Dec 01; 141(3):3072-6. PubMed ID: 23871061 [Abstract] [Full Text] [Related]
19. Site-saturation mutagenesis of central tyrosine 195 leading to diverse product specificities of an α-cyclodextrin glycosyltransferase from Paenibacillus sp. 602-1. Xie T, Song B, Yue Y, Chao Y, Qian S. J Biotechnol; 2014 Jan 20; 170():10-6. PubMed ID: 24246271 [Abstract] [Full Text] [Related]
20. Fusion of a family 20 carbohydrate-binding module (CBM20) with cyclodextrin glycosyltransferase of Geobacillus sp. CHB1 improves catalytic efficiency. Jia X, Guo Y, Lin X, You M, Lin C, Chen L, Chen J. J Basic Microbiol; 2017 Jun 20; 57(6):471-480. PubMed ID: 28422446 [Abstract] [Full Text] [Related] Page: [Next] [New Search]