These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Correlation between glass-forming ability and fragility of pharmaceutical compounds. Kawakami K, Harada T, Yoshihashi Y, Yonemochi E, Terada K, Moriyama H. J Phys Chem B; 2015 Apr 09; 119(14):4873-80. PubMed ID: 25781503 [Abstract] [Full Text] [Related]
23. An investigation into the influence of counterion on the properties of some amorphous organic salts. Towler CS, Li T, Wikström H, Remick DM, Sanchez-Felix MV, Taylor LS. Mol Pharm; 2008 Apr 09; 5(6):946-55. PubMed ID: 19434850 [Abstract] [Full Text] [Related]
25. Novel descriptors from main and side chains of high-molecular-weight polymers applied to prediction of glass transition temperatures. Palomba D, Vazquez GE, Díaz MF. J Mol Graph Model; 2012 Sep 09; 38():137-47. PubMed ID: 23085161 [Abstract] [Full Text] [Related]
26. Capturing the crystal: prediction of enthalpy of sublimation, crystal lattice energy, and melting points of organic compounds. Salahinejad M, Le TC, Winkler DA. J Chem Inf Model; 2013 Jan 28; 53(1):223-9. PubMed ID: 23215043 [Abstract] [Full Text] [Related]
31. Scores of extended connectivity fingerprint as descriptors in QSPR study of melting point and aqueous solubility. Zhou D, Alelyunas Y, Liu R. J Chem Inf Model; 2008 May 28; 48(5):981-7. PubMed ID: 18465850 [Abstract] [Full Text] [Related]
33. Comparison of linear and nonlinear classification algorithms for the prediction of drug and chemical metabolism by human UDP-glucuronosyltransferase isoforms. Sorich MJ, Miners JO, McKinnon RA, Winkler DA, Burden FR, Smith PA. J Chem Inf Comput Sci; 2003 May 28; 43(6):2019-24. PubMed ID: 14632453 [Abstract] [Full Text] [Related]
34. QSPR modelling for prediction of glass transition temperature of diverse polymers. Khan PM, Roy K. SAR QSAR Environ Res; 2018 Dec 28; 29(12):935-956. PubMed ID: 30392386 [Abstract] [Full Text] [Related]
35. Machine learning analysis of a large set of homopolymers to predict glass transition temperatures. Casanola-Martin GM, Karuth A, Pham-The H, González-Díaz H, Webster DC, Rasulev B. Commun Chem; 2024 Oct 02; 7(1):226. PubMed ID: 39358434 [Abstract] [Full Text] [Related]
36. Relationship between crystallization tendencies during cooling from melt and isothermal storage: toward a general understanding of physical stability of pharmaceutical glasses. Kawakami K, Harada T, Miura K, Yoshihashi Y, Yonemochi E, Terada K, Moriyama H. Mol Pharm; 2014 Jun 02; 11(6):1835-43. PubMed ID: 24731254 [Abstract] [Full Text] [Related]
38. Development and validation of in silico models for estimating drug preformulation risk in PEG400/water and Tween80/water systems. Crivori P, Morelli A, Pezzetta D, Rocchetti M, Poggesi I. Eur J Pharm Sci; 2007 Nov 02; 32(3):169-81. PubMed ID: 17714921 [Abstract] [Full Text] [Related]
39. Benchmarking Machine Learning Models for Polymer Informatics: An Example of Glass Transition Temperature. Tao L, Varshney V, Li Y. J Chem Inf Model; 2021 Nov 22; 61(11):5395-5413. PubMed ID: 34662106 [Abstract] [Full Text] [Related]
40. Skin permeation rate as a function of chemical structure. Katritzky AR, Dobchev DA, Fara DC, Hür E, Tämm K, Kurunczi L, Karelson M, Varnek A, Solov'ev VP. J Med Chem; 2006 Jun 01; 49(11):3305-14. PubMed ID: 16722649 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]