These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


411 related items for PubMed ID: 25361956

  • 1. Quantitative peptidomics study reveals that a wound-induced peptide from PR-1 regulates immune signaling in tomato.
    Chen YL, Lee CY, Cheng KT, Chang WH, Huang RN, Nam HG, Chen YR.
    Plant Cell; 2014 Oct; 26(10):4135-48. PubMed ID: 25361956
    [Abstract] [Full Text] [Related]

  • 2. The antimicrobial peptide snakin-2 is upregulated in the defense response of tomatoes (Solanum lycopersicum) as part of the jasmonate-dependent signaling pathway.
    Herbel V, Sieber-Frank J, Wink M.
    J Plant Physiol; 2017 Jan; 208():1-6. PubMed ID: 27888675
    [Abstract] [Full Text] [Related]

  • 3. The jasmonate signaling pathway in tomato regulates susceptibility to a toxin-dependent necrotrophic pathogen.
    Egusa M, Ozawa R, Takabayashi J, Otani H, Kodama M.
    Planta; 2009 Mar; 229(4):965-76. PubMed ID: 19148670
    [Abstract] [Full Text] [Related]

  • 4. The abiotic stress-responsive NAC-type transcription factor SlNAC4 regulates salt and drought tolerance and stress-related genes in tomato (Solanum lycopersicum).
    Zhu M, Chen G, Zhang J, Zhang Y, Xie Q, Zhao Z, Pan Y, Hu Z.
    Plant Cell Rep; 2014 Nov; 33(11):1851-63. PubMed ID: 25063324
    [Abstract] [Full Text] [Related]

  • 5. CRISPR/Cas9-Mediated SlMYC2 Mutagenesis Adverse to Tomato Plant Growth and MeJA-Induced Fruit Resistance to Botrytis cinerea.
    Shu P, Li Z, Min D, Zhang X, Ai W, Li J, Zhou J, Li Z, Li F, Li X.
    J Agric Food Chem; 2020 May 20; 68(20):5529-5538. PubMed ID: 32372640
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Priming of Immune System in Tomato by Treatment with Low Concentration of L-Methionine.
    Tanaka T, Fujita M, Kusajima M, Narita F, Asami T, Maruyama-Nakashita A, Nakajima M, Nakashita H.
    Int J Mol Sci; 2024 Jun 07; 25(12):. PubMed ID: 38928022
    [Abstract] [Full Text] [Related]

  • 8. A virus-induced gene silencing screen identifies a role for Thylakoid Formation1 in Pseudomonas syringae pv tomato symptom development in tomato and Arabidopsis.
    Wangdi T, Uppalapati SR, Nagaraj S, Ryu CM, Bender CL, Mysore KS.
    Plant Physiol; 2010 Jan 07; 152(1):281-92. PubMed ID: 19915014
    [Abstract] [Full Text] [Related]

  • 9. Molecular cloning of a tomato leaf cDNA encoding an aspartic protease, a systemic wound response protein.
    Schaller A, Ryan CA.
    Plant Mol Biol; 1996 Aug 07; 31(5):1073-7. PubMed ID: 8843949
    [Abstract] [Full Text] [Related]

  • 10. A sugarcane pathogenesis-related protein, ScPR10, plays a positive role in defense responses under Sporisorium scitamineum, SrMV, SA, and MeJA stresses.
    Peng Q, Su Y, Ling H, Ahmad W, Gao S, Guo J, Que Y, Xu L.
    Plant Cell Rep; 2017 Sep 07; 36(9):1427-1440. PubMed ID: 28634719
    [Abstract] [Full Text] [Related]

  • 11. Virulence systems of Pseudomonas syringae pv. tomato promote bacterial speck disease in tomato by targeting the jasmonate signaling pathway.
    Zhao Y, Thilmony R, Bender CL, Schaller A, He SY, Howe GA.
    Plant J; 2003 Nov 07; 36(4):485-99. PubMed ID: 14617079
    [Abstract] [Full Text] [Related]

  • 12. Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f.sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation.
    Król P, Igielski R, Pollmann S, Kępczyńska E.
    J Plant Physiol; 2015 May 01; 179():122-32. PubMed ID: 25867625
    [Abstract] [Full Text] [Related]

  • 13. Rice OsPAD4 functions differently from Arabidopsis AtPAD4 in host-pathogen interactions.
    Ke Y, Liu H, Li X, Xiao J, Wang S.
    Plant J; 2014 May 01; 78(4):619-31. PubMed ID: 24617729
    [Abstract] [Full Text] [Related]

  • 14. SlERF2 Is Associated with Methyl Jasmonate-Mediated Defense Response against Botrytis cinerea in Tomato Fruit.
    Yu W, Zhao R, Sheng J, Shen L.
    J Agric Food Chem; 2018 Sep 26; 66(38):9923-9932. PubMed ID: 30192535
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Functional analysis of endo-1,4-β-glucanases in response to Botrytis cinerea and Pseudomonas syringae reveals their involvement in plant-pathogen interactions.
    Finiti I, Leyva MO, López-Cruz J, Calderan Rodrigues B, Vicedo B, Angulo C, Bennett AB, Grant M, García-Agustín P, González-Bosch C.
    Plant Biol (Stuttg); 2013 Sep 26; 15(5):819-31. PubMed ID: 23528138
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. An integrated proteomic approach to decipher the effect of methyl jasmonate elicitation on the proteome of Silybum marianum L. hairy roots.
    Gharechahi J, Khalili M, Hasanloo T, Salekdeh GH.
    Plant Physiol Biochem; 2013 Sep 26; 70():115-22. PubMed ID: 23771036
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 21.