These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


654 related items for PubMed ID: 25363674

  • 21. Improvement of lactic acid production in Saccharomyces cerevisiae by a deletion of ssb1.
    Lee JJ, Crook N, Sun J, Alper HS.
    J Ind Microbiol Biotechnol; 2016 Jan; 43(1):87-96. PubMed ID: 26660479
    [Abstract] [Full Text] [Related]

  • 22. Enhanced d-lactic acid production by recombinant Saccharomyces cerevisiae following optimization of the global metabolic pathway.
    Yamada R, Wakita K, Mitsui R, Ogino H.
    Biotechnol Bioeng; 2017 Sep; 114(9):2075-2084. PubMed ID: 28475210
    [Abstract] [Full Text] [Related]

  • 23. 2,3-butanediol production from cellobiose by engineered Saccharomyces cerevisiae.
    Nan H, Seo SO, Oh EJ, Seo JH, Cate JH, Jin YS.
    Appl Microbiol Biotechnol; 2014 Jun; 98(12):5757-64. PubMed ID: 24743979
    [Abstract] [Full Text] [Related]

  • 24. Deletion of glycerol-3-phosphate dehydrogenase genes improved 2,3-butanediol production by reducing glycerol production in pyruvate decarboxylase-deficient Saccharomyces cerevisiae.
    Kim JW, Lee YG, Kim SJ, Jin YS, Seo JH.
    J Biotechnol; 2019 Oct 10; 304():31-37. PubMed ID: 31421146
    [Abstract] [Full Text] [Related]

  • 25. Production of D-lactic acid in a continuous membrane integrated fermentation reactor by genetically modified Saccharomyces cerevisiae: enhancement in D-lactic acid carbon yield.
    Mimitsuka T, Sawai K, Kobayashi K, Tsukada T, Takeuchi N, Yamada K, Ogino H, Yonehara T.
    J Biosci Bioeng; 2015 Jan 10; 119(1):65-71. PubMed ID: 25132509
    [Abstract] [Full Text] [Related]

  • 26. Efficient production of L-Lactic acid by metabolically engineered Saccharomyces cerevisiae with a genome-integrated L-lactate dehydrogenase gene.
    Ishida N, Saitoh S, Tokuhiro K, Nagamori E, Matsuyama T, Kitamoto K, Takahashi H.
    Appl Environ Microbiol; 2005 Apr 10; 71(4):1964-70. PubMed ID: 15812027
    [Abstract] [Full Text] [Related]

  • 27. Deletion of JEN1 and ADY2 reduces lactic acid yield from an engineered Saccharomyces cerevisiae, in xylose medium, expressing a heterologous lactate dehydrogenase.
    Turner TL, Lane S, Jayakody LN, Zhang GC, Kim H, Cho W, Jin YS.
    FEMS Yeast Res; 2019 Sep 01; 19(6):. PubMed ID: 31505595
    [Abstract] [Full Text] [Related]

  • 28. Regulation of Lactobacillus plantarum contamination on the carbohydrate and energy related metabolisms of Saccharomyces cerevisiae during bioethanol fermentation.
    Dong SJ, Lin XH, Li H.
    Int J Biochem Cell Biol; 2015 Nov 01; 68():33-41. PubMed ID: 26279142
    [Abstract] [Full Text] [Related]

  • 29. Systematic engineering of Saccharomyces cerevisiae for D-lactic acid production with near theoretical yield.
    Watcharawipas A, Sae-Tang K, Sansatchanon K, Sudying P, Boonchoo K, Tanapongpipat S, Kocharin K, Runguphan W.
    FEMS Yeast Res; 2021 Apr 28; 21(4):. PubMed ID: 33856451
    [Abstract] [Full Text] [Related]

  • 30. Lactic acid production by Saccharomyces cerevisiae expressing a Rhizopus oryzae lactate dehydrogenase gene.
    Skory CD.
    J Ind Microbiol Biotechnol; 2003 Jan 28; 30(1):22-7. PubMed ID: 12545382
    [Abstract] [Full Text] [Related]

  • 31. The importance of the glycerol 3-phosphate shuttle during aerobic growth of Saccharomyces cerevisiae.
    Larsson C, Påhlman IL, Ansell R, Rigoulet M, Adler L, Gustafsson L.
    Yeast; 1998 Mar 15; 14(4):347-57. PubMed ID: 9559543
    [Abstract] [Full Text] [Related]

  • 32. The effect of pyruvate decarboxylase gene knockout in Saccharomyces cerevisiae on L-lactic acid production.
    Ishida N, Saitoh S, Onishi T, Tokuhiro K, Nagamori E, Kitamoto K, Takahashi H.
    Biosci Biotechnol Biochem; 2006 May 15; 70(5):1148-53. PubMed ID: 16717415
    [Abstract] [Full Text] [Related]

  • 33. A CRISPR/Cas9-based exploration into the elusive mechanism for lactate export in Saccharomyces cerevisiae.
    Mans R, Hassing EJ, Wijsman M, Giezekamp A, Pronk JT, Daran JM, van Maris AJA.
    FEMS Yeast Res; 2017 Dec 01; 17(8):. PubMed ID: 29145596
    [Abstract] [Full Text] [Related]

  • 34. Metabolic engineering of Saccharomyces cerevisiae for linalool production.
    Amiri P, Shahpiri A, Asadollahi MA, Momenbeik F, Partow S.
    Biotechnol Lett; 2016 Mar 01; 38(3):503-8. PubMed ID: 26614300
    [Abstract] [Full Text] [Related]

  • 35. Improvement of ethanol yield from glycerol via conversion of pyruvate to ethanol in metabolically engineered Saccharomyces cerevisiae.
    Yu KO, Jung J, Ramzi AB, Kim SW, Park C, Han SO.
    Appl Biochem Biotechnol; 2012 Feb 01; 166(4):856-65. PubMed ID: 22161213
    [Abstract] [Full Text] [Related]

  • 36. Effect of alternative NAD+-regenerating pathways on the formation of primary and secondary aroma compounds in a Saccharomyces cerevisiae glycerol-defective mutant.
    Jain VK, Divol B, Prior BA, Bauer FF.
    Appl Microbiol Biotechnol; 2012 Jan 01; 93(1):131-41. PubMed ID: 21720823
    [Abstract] [Full Text] [Related]

  • 37. Overexpression of ESBP6 improves lactic acid resistance and production in Saccharomyces cerevisiae.
    Sugiyama M, Akase SP, Nakanishi R, Kaneko Y, Harashima S.
    J Biosci Bioeng; 2016 Oct 01; 122(4):415-20. PubMed ID: 27102264
    [Abstract] [Full Text] [Related]

  • 38. Genome engineering of Kluyveromyces marxianus for high D-( -)-lactic acid production under low pH conditions.
    Gosalawit C, Khunnonkwao P, Jantama K.
    Appl Microbiol Biotechnol; 2023 Aug 01; 107(16):5095-5105. PubMed ID: 37405435
    [Abstract] [Full Text] [Related]

  • 39. A modified Cre-lox genetic switch to dynamically control metabolic flow in Saccharomyces cerevisiae.
    Yamanishi M, Matsuyama T.
    ACS Synth Biol; 2012 May 18; 1(5):172-80. PubMed ID: 23651155
    [Abstract] [Full Text] [Related]

  • 40. Involvement of the external mitochondrial NADH dehydrogenase Nde1 in glycerol metabolism by wild-type and engineered Saccharomyces cerevisiae strains.
    Aßkamp MR, Klein M, Nevoigt E.
    FEMS Yeast Res; 2019 May 01; 19(3):. PubMed ID: 30915433
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 33.