These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
150 related items for PubMed ID: 25367791
1. Positional variation in grain mineral nutrients within a rice panicle and its relation to phytic acid concentration. Su D, Sultan F, Zhao NC, Lei BT, Wang FB, Pan G, Cheng FM. J Zhejiang Univ Sci B; 2014 Nov; 15(11):986-96. PubMed ID: 25367791 [Abstract] [Full Text] [Related]
2. Different Phosphorus Supplies Altered the Accumulations and Quantitative Distributions of Phytic Acid, Zinc, and Iron in Rice (Oryza sativa L.) Grains. Su D, Zhou L, Zhao Q, Pan G, Cheng F. J Agric Food Chem; 2018 Feb 21; 66(7):1601-1611. PubMed ID: 29401375 [Abstract] [Full Text] [Related]
3. Zinc absorption from low phytic acid genotypes of maize (Zea mays L.), Barley (Hordeum vulgare L.), and Rice (Oryza sativa L.) assessed in a suckling rat pup model. Lönnerdal B, Mendoza C, Brown KH, Rutger JN, Raboy V. J Agric Food Chem; 2011 May 11; 59(9):4755-62. PubMed ID: 21417220 [Abstract] [Full Text] [Related]
4. In vitro solubility of calcium, iron and zinc in relation to phytic acid levels in rice-based consumer products in China. Liang J, Han BZ, Nout MJ, Hamer RJ. Int J Food Sci Nutr; 2010 Feb 11; 61(1):40-51. PubMed ID: 19919509 [Abstract] [Full Text] [Related]
5. A single nucleotide substitution in the SPDT transporter gene reduced phytic acid and increased mineral bioavailability from Rice grain (Oryza sativa L.). Kumar A, Nayak S, Ngangkham U, Sah RP, Lal MK, Tp A, Behera S, Swain P, Behera L, Sharma S. J Food Biochem; 2021 Jul 11; 45(7):e13822. PubMed ID: 34121203 [Abstract] [Full Text] [Related]
6. Effects of foliar iron application on iron concentration in polished rice grain and its bioavailability. Wei Y, Shohag MJ, Yang X, Yibin Z. J Agric Food Chem; 2012 Nov 14; 60(45):11433-9. PubMed ID: 23083412 [Abstract] [Full Text] [Related]
7. Phytic acid content may affect starch digestibility and glycemic index value of rice (Oryza sativa L.). Kumar A, Sahu C, Panda PA, Biswal M, Sah RP, Lal MK, Baig MJ, Swain P, Behera L, Chattopadhyay K, Sharma S. J Sci Food Agric; 2020 Mar 15; 100(4):1598-1607. PubMed ID: 31773736 [Abstract] [Full Text] [Related]
8. Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. Garcia-Oliveira AL, Tan L, Fu Y, Sun C. J Integr Plant Biol; 2009 Jan 15; 51(1):84-92. PubMed ID: 19166498 [Abstract] [Full Text] [Related]
9. Association of Increased Grain Iron and Zinc Concentrations with Agro-morphological Traits of Biofortified Rice. Moreno-Moyano LT, Bonneau JP, Sánchez-Palacios JT, Tohme J, Johnson AA. Front Plant Sci; 2016 Jan 15; 7():1463. PubMed ID: 27733860 [Abstract] [Full Text] [Related]
10. Source-Sink Manipulation Affects Accumulation of Zinc and Other Nutrient Elements in Wheat Grains. Wang L, Xia H, Li X, Qiao Y, Xue Y, Jiang X, Yan W, Liu Y, Xue Y, Kong L. Plants (Basel); 2021 May 20; 10(5):. PubMed ID: 34065615 [Abstract] [Full Text] [Related]
11. Comparison of the phosphorus and mineral concentrations in bran and abraded kernel fractions of a normal barley (Hordeum vulgare) cultivar versus four low phytic acid isolines. Liu K, Peterson KL, Raboy V. J Agric Food Chem; 2007 May 30; 55(11):4453-60. PubMed ID: 17488089 [Abstract] [Full Text] [Related]
12. Soaking and extrusion effects on physicochemical parameters, phytic acid, nutrient content and mineral bio-accessibility of whole rice grain. Albarracín M, José González R, Drago SR. Int J Food Sci Nutr; 2015 Mar 30; 66(2):210-5. PubMed ID: 25666413 [Abstract] [Full Text] [Related]
13. Understanding natural genetic variation for grain phytic acid content and functional marker development for phytic acid-related genes in rice. Tp MA, Kumar A, Anilkumar C, Sah RP, Behera S, Marndi BC. BMC Plant Biol; 2022 Sep 17; 22(1):446. PubMed ID: 36114452 [Abstract] [Full Text] [Related]
14. A decrease in phytic acid content substantially affects the distribution of mineral elements within rice seeds. Sakai H, Iwai T, Matsubara C, Usui Y, Okamura M, Yatou O, Terada Y, Aoki N, Nishida S, Yoshida KT. Plant Sci; 2015 Sep 17; 238():170-7. PubMed ID: 26259185 [Abstract] [Full Text] [Related]
15. Improved yield and Zn accumulation for rice grain by Zn fertilization and optimized water management. Wang YY, Wei YY, Dong LX, Lu LL, Feng Y, Zhang J, Pan FS, Yang XE. J Zhejiang Univ Sci B; 2014 Apr 17; 15(4):365-74. PubMed ID: 24711357 [Abstract] [Full Text] [Related]
16. Introgression of qPE9-1 allele, conferring the panicle erectness, leads to the decrease of grain yield per plant in japonica rice (Oryza sativa L.). Yi X, Zhang Z, Zeng S, Tian C, Peng J, Li M, Lu Y, Meng Q, Gu M, Yan C. J Genet Genomics; 2011 May 20; 38(5):217-23. PubMed ID: 21621743 [Abstract] [Full Text] [Related]
17. Genotypic variation and relationships between quality traits and trace elements in traditional and improved rice (Oryza sativa L.) genotypes. Anandan A, Rajiv G, Eswaran R, Prakash M. J Food Sci; 2011 May 20; 76(4):H122-30. PubMed ID: 22417360 [Abstract] [Full Text] [Related]
18. Effects of yeast and bran on phytate degradation and minerals in rice bread. Kadan RS, Phillippy BQ. J Food Sci; 2007 May 20; 72(4):C208-11. PubMed ID: 17995762 [Abstract] [Full Text] [Related]
20. Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice ( Oryza sativa L.). Seyfferth AL, Fendorf S. Environ Sci Technol; 2012 Dec 18; 46(24):13176-83. PubMed ID: 23153302 [Abstract] [Full Text] [Related] Page: [Next] [New Search]