These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


280 related items for PubMed ID: 2537725

  • 1. Characterization of the ribosomal properties required for formation of a GTPase active complex with the eukaryotic elongation factor 2.
    Nygård O, Nilsson L.
    Eur J Biochem; 1989 Feb 15; 179(3):603-8. PubMed ID: 2537725
    [Abstract] [Full Text] [Related]

  • 2. The mechanism of the protein-synthesis elongation cycle in eukaryotes. Effect of ricin on the ribosomal interaction with elongation factors.
    Nilsson L, Nygård O.
    Eur J Biochem; 1986 Nov 17; 161(1):111-7. PubMed ID: 3780730
    [Abstract] [Full Text] [Related]

  • 3. Activity of the 30-S CsCl core in elongation-factor-dependent GTP hydrolysis.
    Sander G, Marsh RC, Parmeggiani A.
    Eur J Biochem; 1976 Jan 02; 61(1):317-23. PubMed ID: 173554
    [Abstract] [Full Text] [Related]

  • 4. Reduced turnover of the elongation factor EF-1 X ribosome complex after treatment with the protein synthesis inhibitor II from barley seeds.
    Nilsson L, Asano K, Svensson B, Poulsen FM, Nygård O.
    Biochim Biophys Acta; 1986 Oct 16; 868(1):62-70. PubMed ID: 3756169
    [Abstract] [Full Text] [Related]

  • 5. Reduced ribosomal binding of eukaryotic elongation factor 2 following ADP-ribosylation. Difference in binding selectivity between polyribosomes and reconstituted monoribosomes.
    Nygård O, Nilsson L.
    Biochim Biophys Acta; 1985 Feb 20; 824(2):152-62. PubMed ID: 3970930
    [Abstract] [Full Text] [Related]

  • 6. [Stoichiometry of GTP hydrolysis during peptide synthesis on the ribosome. I. Factor-independent GTPase and ATPase of ribosomal preparations].
    Kakhniashvili DG, Smailov SK, Gavrilova LP.
    Biokhimiia; 1980 Nov 20; 45(11):1999-2012. PubMed ID: 6113012
    [Abstract] [Full Text] [Related]

  • 7. Synthesis of guanosine 5'-di- and -triphosphate derivatives with modified terminal phosphates: effect on ribosome-elongation factor G-dependent reactions.
    Eckstein F, Bruns W, Parmeggiani A.
    Biochemistry; 1975 Nov 18; 14(23):5225-32. PubMed ID: 1103967
    [Abstract] [Full Text] [Related]

  • 8. Interaction of elongation factor Tu with the ribosome. A study using the antibiotic kirromycin.
    Sander G, Ivell R, Crechet JB, Parmeggiani A.
    Biochemistry; 1980 Mar 04; 19(5):865-70. PubMed ID: 6101963
    [Abstract] [Full Text] [Related]

  • 9. Mechanism of the ribosome-dependent uncoupled GTPase reaction catalyzed by polypeptide chain elongation factor G.
    Arai N, Kaziro Y.
    J Biochem; 1975 Feb 04; 77(2):439-47. PubMed ID: 165176
    [Abstract] [Full Text] [Related]

  • 10. Regulation of the uncoupled GTPase activity of elongation factor G (EF-G) by the conformations of the ribosomal subunits.
    Nagel K, Voigt J.
    Biochim Biophys Acta; 1993 Aug 19; 1174(2):153-61. PubMed ID: 8357832
    [Abstract] [Full Text] [Related]

  • 11. Effect of thiostrepton and 3'-terminal fragments of aminoacyl-tRNA on EF-Tu and ribosome-dependent GTP hydrolysis.
    Bhuta P, Chládek S.
    Biochim Biophys Acta; 1982 Aug 30; 698(2):167-72. PubMed ID: 6127109
    [Abstract] [Full Text] [Related]

  • 12. The elongation factor G carries a catalytic site for GTP hydrolysis, which is revealed by using 2-propanol in the absence of ribosomes.
    De Vendittis E, Masullo M, Bocchini V.
    J Biol Chem; 1986 Apr 05; 261(10):4445-50. PubMed ID: 3007457
    [Abstract] [Full Text] [Related]

  • 13. Characterization of the elongation factors from calf brain. 3. Properties of the GTPase activity of EF-1 alpha and mode of action of kirromycin.
    Crechet JB, Parmeggiani A.
    Eur J Biochem; 1986 Dec 15; 161(3):655-60. PubMed ID: 3024979
    [Abstract] [Full Text] [Related]

  • 14. Interactions of elongation factor 2 (EF-2) with guanine nucleotides and ribosomes. Binding of periodate-oxidized guanine nucleotides to EF-2.
    Nurten R, Bermek E.
    Eur J Biochem; 1980 Feb 15; 103(3):551-5. PubMed ID: 6244163
    [Abstract] [Full Text] [Related]

  • 15. Isolation and characterization of an inhibitor of ribosome-dependent GTP hydrolysis by elongation factor G.
    Voigt J, Nagel K.
    Eur J Biochem; 1990 Dec 12; 194(2):579-85. PubMed ID: 2269283
    [Abstract] [Full Text] [Related]

  • 16. Structural and functional studies of the interaction of the eukaryotic elongation factor EF-2 with GTP and ribosomes.
    Nilsson L, Nygård O.
    Eur J Biochem; 1988 Jan 15; 171(1-2):293-9. PubMed ID: 3338467
    [Abstract] [Full Text] [Related]

  • 17. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome.
    Rodnina MV, Savelsbergh A, Katunin VI, Wintermeyer W.
    Nature; 1997 Jan 02; 385(6611):37-41. PubMed ID: 8985244
    [Abstract] [Full Text] [Related]

  • 18. Synergism between the GTPase activities of EF-Tu.GTP and EF-G.GTP on empty ribosomes. Elongation factors as stimulators of the ribosomal oscillation between two conformations.
    Mesters JR, Potapov AP, de Graaf JM, Kraal B.
    J Mol Biol; 1994 Oct 07; 242(5):644-54. PubMed ID: 7932721
    [Abstract] [Full Text] [Related]

  • 19. Affinity labelling of the eukaryotic elongation factor EF-2 with the guanosine nucleotide analogue 5'-p-fluorosulfonylbenzoylguanosine.
    Nilsson L, Nygård O.
    Biochim Biophys Acta; 1984 May 15; 782(1):49-54. PubMed ID: 6722159
    [Abstract] [Full Text] [Related]

  • 20. The coupling with polypeptide synthesis of the GTPase activity dependent on elongation factor G.
    Chinali G, Parmeggiani A.
    J Biol Chem; 1980 Aug 10; 255(15):7455-9. PubMed ID: 6104671
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 14.