These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


416 related items for PubMed ID: 25381752

  • 21. Periodicity-induced symmetry breaking in a Fano lattice: hybridization and tight-binding regimes.
    Yan C, Martin OJ.
    ACS Nano; 2014 Nov 25; 8(11):11860-8. PubMed ID: 25386975
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23. Tunable plasmonic resonances based on elliptical annular aperture arrays on conducting substrates for advanced biosensing.
    Liang Y, Peng W, Li L, Qian S, Wang Q.
    Opt Lett; 2015 Aug 15; 40(16):3909-12. PubMed ID: 26274691
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Strongly coupled evenly divided disks: a new compact and tunable platform for plasmonic Fano resonances.
    Zhang S, Zhu X, Xiao W, Shi H, Wang Y, Chen Z, Chen Y, Sun K, Muskens OL, De Groot CH, Liu SD, Duan H.
    Nanotechnology; 2020 Aug 07; 31(32):325202. PubMed ID: 32340011
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. Universal scaling of the figure of merit of plasmonic sensors.
    Offermans P, Schaafsma MC, Rodriguez SR, Zhang Y, Crego-Calama M, Brongersma SH, Gómez Rivas J.
    ACS Nano; 2011 Jun 28; 5(6):5151-7. PubMed ID: 21574624
    [Abstract] [Full Text] [Related]

  • 31. Highly controllable double Fano resonances in plasmonic metasurfaces.
    Liu Z, Ye J.
    Nanoscale; 2016 Oct 14; 8(40):17665-17674. PubMed ID: 27714114
    [Abstract] [Full Text] [Related]

  • 32. Optical Second Harmonic Generation in Plasmonic Nanostructures: From Fundamental Principles to Advanced Applications.
    Butet J, Brevet PF, Martin OJ.
    ACS Nano; 2015 Nov 24; 9(11):10545-62. PubMed ID: 26474346
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Refractive Index Sensing Using Visible Electromagnetic Resonances of Supported Cu2O Particles.
    Susman MD, Vaskevich A, Rubinstein I.
    ACS Appl Mater Interfaces; 2017 Mar 08; 9(9):8177-8186. PubMed ID: 28133959
    [Abstract] [Full Text] [Related]

  • 36. Plasmonic radiance: probing structure at the Ångström scale with visible light.
    Gallinet B, Siegfried T, Sigg H, Nordlander P, Martin OJ.
    Nano Lett; 2013 Feb 13; 13(2):497-503. PubMed ID: 23273336
    [Abstract] [Full Text] [Related]

  • 37. Refractive Index Sensor Based on Fano Resonances in Metal-Insulator-Metal Waveguides Coupled with Resonators.
    Tang Y, Zhang Z, Wang R, Hai Z, Xue C, Zhang W, Yan S.
    Sensors (Basel); 2017 Apr 06; 17(4):. PubMed ID: 28383510
    [Abstract] [Full Text] [Related]

  • 38. Third Harmonic Mechanism in Complex Plasmonic Fano Structures.
    Metzger B, Schumacher T, Hentschel M, Lippitz M, Giessen H.
    ACS Photonics; 2014 Jun 18; 1(6):471-476. PubMed ID: 25540812
    [Abstract] [Full Text] [Related]

  • 39. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS, El-Sayed MA.
    J Phys Chem B; 2006 Oct 05; 110(39):19220-5. PubMed ID: 17004772
    [Abstract] [Full Text] [Related]

  • 40. Excitation and tuning of Fano-like cavity plasmon resonances in dielectric-metal core-shell resonators.
    Gu P, Wan M, Wu W, Chen Z, Wang Z.
    Nanoscale; 2016 May 21; 8(19):10358-63. PubMed ID: 27139034
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 21.