These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


151 related items for PubMed ID: 25385643

  • 21. Asymmetric activation of Xer site-specific recombination by FtsK.
    Massey TH, Aussel L, Barre FX, Sherratt DJ.
    EMBO Rep; 2004 Apr; 5(4):399-404. PubMed ID: 15031713
    [Abstract] [Full Text] [Related]

  • 22. Xer Site Specific Recombination: Double and Single Recombinase Systems.
    Castillo F, Benmohamed A, Szatmari G.
    Front Microbiol; 2017 Apr; 8():453. PubMed ID: 28373867
    [Abstract] [Full Text] [Related]

  • 23. [Progress on XerCD/dif site-specific recombination].
    Tian DQ, Wang YM, Zheng T.
    Yi Chuan; 2012 Aug; 34(8):1003-8. PubMed ID: 22917905
    [Abstract] [Full Text] [Related]

  • 24. Fast growth conditions uncouple the final stages of chromosome segregation and cell division in Escherichia coli.
    Galli E, Midonet C, Paly E, Barre FX.
    PLoS Genet; 2017 Mar; 13(3):e1006702. PubMed ID: 28358835
    [Abstract] [Full Text] [Related]

  • 25. Sequential strand exchange by XerC and XerD during site-specific recombination at dif.
    Blakely GW, Davidson AO, Sherratt DJ.
    J Biol Chem; 2000 Apr 07; 275(14):9930-6. PubMed ID: 10744667
    [Abstract] [Full Text] [Related]

  • 26. Activation of Xer-recombination at dif: structural basis of the FtsKγ-XerD interaction.
    Keller AN, Xin Y, Boer S, Reinhardt J, Baker R, Arciszewska LK, Lewis PJ, Sherratt DJ, Löwe J, Grainge I.
    Sci Rep; 2016 Oct 06; 6():33357. PubMed ID: 27708355
    [Abstract] [Full Text] [Related]

  • 27. Site-specific recombination systems in filamentous phages.
    Askora A, Abdel-Haliem ME, Yamada T.
    Mol Genet Genomics; 2012 Jul 06; 287(7):525-30. PubMed ID: 22661259
    [Abstract] [Full Text] [Related]

  • 28. Structure-function correlations in the XerD site-specific recombinase revealed by pentapeptide scanning mutagenesis.
    Cao Y, Hallet B, Sherratt DJ, Hayes F.
    J Mol Biol; 1997 Nov 21; 274(1):39-53. PubMed ID: 9398514
    [Abstract] [Full Text] [Related]

  • 29. Mechanistic insights into filamentous phage integration in Vibrio cholerae.
    Das B.
    Front Microbiol; 2014 Nov 21; 5():650. PubMed ID: 25506341
    [Abstract] [Full Text] [Related]

  • 30. [Alteration of cholera toxin biosynthesis in Vibrio cholerae 01 as a result of temperate phage 139 integration into bacterial chromosome].
    Eroshenko GA, Smirnova NI.
    Mol Gen Mikrobiol Virusol; 2002 Nov 21; (2):9-14. PubMed ID: 12180025
    [Abstract] [Full Text] [Related]

  • 31. Holliday junction affinity of the base excision repair factor Endo III contributes to cholera toxin phage integration.
    Bischerour J, Spangenberg C, Barre FX.
    EMBO J; 2012 Sep 12; 31(18):3757-67. PubMed ID: 22863778
    [Abstract] [Full Text] [Related]

  • 32. Interactions of the Caulobacter crescentus XerC and XerD recombinases with the E. coli dif site.
    Jouan L, Szatmari G.
    FEMS Microbiol Lett; 2003 May 28; 222(2):257-62. PubMed ID: 12770716
    [Abstract] [Full Text] [Related]

  • 33. Binding and cleavage of nicked substrates by site-specific recombinases XerC and XerD.
    Blakely GW, Davidson AO, Sherratt DJ.
    J Mol Biol; 1997 Jan 10; 265(1):30-9. PubMed ID: 8995522
    [Abstract] [Full Text] [Related]

  • 34. C-terminal interactions between the XerC and XerD site-specific recombinases.
    Spiers AJ, Sherratt DJ.
    Mol Microbiol; 1999 Jun 10; 32(5):1031-42. PubMed ID: 10361305
    [Abstract] [Full Text] [Related]

  • 35. Crystal structures of a CTXphi pIII domain unbound and in complex with a Vibrio cholerae TolA domain reveal novel interaction interfaces.
    Ford CG, Kolappan S, Phan HT, Waldor MK, Winther-Larsen HC, Craig L.
    J Biol Chem; 2012 Oct 19; 287(43):36258-72. PubMed ID: 22942280
    [Abstract] [Full Text] [Related]

  • 36. The unconventional Xer recombination machinery of Streptococci/Lactococci.
    Le Bourgeois P, Bugarel M, Campo N, Daveran-Mingot ML, Labonté J, Lanfranchi D, Lautier T, Pagès C, Ritzenthaler P.
    PLoS Genet; 2007 Jul 19; 3(7):e117. PubMed ID: 17630835
    [Abstract] [Full Text] [Related]

  • 37. Dissection of a functional interaction between the DNA translocase, FtsK, and the XerD recombinase.
    Yates J, Zhekov I, Baker R, Eklund B, Sherratt DJ, Arciszewska LK.
    Mol Microbiol; 2006 Mar 19; 59(6):1754-66. PubMed ID: 16553881
    [Abstract] [Full Text] [Related]

  • 38. Species specificity in the activation of Xer recombination at dif by FtsK.
    Yates J, Aroyo M, Sherratt DJ, Barre FX.
    Mol Microbiol; 2003 Jul 19; 49(1):241-9. PubMed ID: 12823825
    [Abstract] [Full Text] [Related]

  • 39. [Vibrio cholerae temperate phage O139: characteristics and role in changing expression of chromosomal virulence genes].
    Smirnova NI, Eroshenko GA, Shchelkanova EIu, Livanova LF, Konnov NP.
    Mol Gen Mikrobiol Virusol; 1999 Jul 19; (1):3-9. PubMed ID: 10190102
    [Abstract] [Full Text] [Related]

  • 40. Distinct centromere-like parS sites on the two chromosomes of Vibrio spp.
    Yamaichi Y, Fogel MA, McLeod SM, Hui MP, Waldor MK.
    J Bacteriol; 2007 Jul 19; 189(14):5314-24. PubMed ID: 17496089
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 8.