These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
167 related items for PubMed ID: 25389558
1. Characterization of a novel β-glucosidase from Gongronella sp. W5 and its application in the hydrolysis of soybean isoflavone glycosides. Fang W, Song R, Zhang X, Zhang X, Zhang X, Wang X, Fang Z, Xiao Y. J Agric Food Chem; 2014 Dec 03; 62(48):11688-95. PubMed ID: 25389558 [Abstract] [Full Text] [Related]
2. Heterologous expression of a GH3 β-glucosidase from Neurospora crassa in Pichia pastoris with high purity and its application in the hydrolysis of soybean isoflavone glycosides. Pei X, Zhao J, Cai P, Sun W, Ren J, Wu Q, Zhang S, Tian C. Protein Expr Purif; 2016 Mar 03; 119():75-84. PubMed ID: 26596358 [Abstract] [Full Text] [Related]
3. Hydrolysis of isoflavone glycosides by a thermostable β-glucosidase from Pyrococcus furiosus. Yeom SJ, Kim BN, Kim YS, Oh DK. J Agric Food Chem; 2012 Feb 15; 60(6):1535-41. PubMed ID: 22251001 [Abstract] [Full Text] [Related]
4. Molecular cloning and characterization of a novel β-glucosidase with high hydrolyzing ability for soybean isoflavone glycosides and glucose-tolerance from soil metagenomic library. Li G, Jiang Y, Fan XJ, Liu YH. Bioresour Technol; 2012 Nov 15; 123():15-22. PubMed ID: 22940294 [Abstract] [Full Text] [Related]
5. Characterization of a GH3 family β-glucosidase from Dictyoglomus turgidum and its application to the hydrolysis of isoflavone glycosides in spent coffee grounds. Kim YS, Yeom SJ, Oh DK. J Agric Food Chem; 2011 Nov 09; 59(21):11812-8. PubMed ID: 21919440 [Abstract] [Full Text] [Related]
6. Characterization of β-glucosidase from Aspergillus terreus and its application in the hydrolysis of soybean isoflavones. Yan FY, Xia W, Zhang XX, Chen S, Nie XZ, Qian LC. J Zhejiang Univ Sci B; 2016 Jun 09; 17(6):455-64. PubMed ID: 27256679 [Abstract] [Full Text] [Related]
7. Hydrolysis of black soybean isoflavone glycosides by Bacillus subtilis natto. Kuo LC, Cheng WY, Wu RY, Huang CJ, Lee KT. Appl Microbiol Biotechnol; 2006 Nov 09; 73(2):314-20. PubMed ID: 16715232 [Abstract] [Full Text] [Related]
8. A Novel Thermostable GH3 β-Glucosidase from Talaromyce leycettanus with Broad Substrate Specificity and Significant Soybean Isoflavone Glycosides-Hydrolyzing Capability. Li X, Xia W, Bai Y, Ma R, Yang H, Luo H, Shi P. Biomed Res Int; 2018 Nov 09; 2018():4794690. PubMed ID: 30426008 [Abstract] [Full Text] [Related]
9. Conversion of Isoflavone Glucosides to Aglycones by Partially Purified β-Glucosidases from Microbial and Vegetable Sources. Fujita A, Alencar SM, Park YK. Appl Biochem Biotechnol; 2015 Jul 09; 176(6):1659-72. PubMed ID: 26018343 [Abstract] [Full Text] [Related]
10. Molecular characterization of a highly-active thermophilic β-glucosidase from Neosartorya fischeri P1 and its application in the hydrolysis of soybean isoflavone glycosides. Yang X, Ma R, Shi P, Huang H, Bai Y, Wang Y, Yang P, Fan Y, Yao B. PLoS One; 2014 Jul 09; 9(9):e106785. PubMed ID: 25188254 [Abstract] [Full Text] [Related]
11. Carbohydrate-binding module assisted purification and immobilization of β-glucosidase onto cellulose and application in hydrolysis of soybean isoflavone glycosides. Chang F, Xue S, Xie X, Fang W, Fang Z, Xiao Y. J Biosci Bioeng; 2018 Feb 09; 125(2):185-191. PubMed ID: 29046264 [Abstract] [Full Text] [Related]
12. Hydrolysis of isoflavone glycoside by immobilization of β-glucosidase on a chitosan-carbon in two-phase system. Chang J, Lee YS, Fang SJ, Park DJ, Choi YL. Int J Biol Macromol; 2013 Oct 09; 61():465-70. PubMed ID: 23973490 [Abstract] [Full Text] [Related]
13. Improve ethanol tolerance of β-glucosidase Bgl1A by semi-rational engineering for the hydrolysis of soybean isoflavone glycosides. Fang W, Yang Y, Zhang X, Yin Q, Zhang X, Wang X, Fang Z, Yazhong X. J Biotechnol; 2016 Jun 10; 227():64-71. PubMed ID: 27084057 [Abstract] [Full Text] [Related]
14. Comparison of three thermostable β-glucosidases for application in the hydrolysis of soybean isoflavone glycosides. Song X, Xue Y, Wang Q, Wu X. J Agric Food Chem; 2011 Mar 09; 59(5):1954-61. PubMed ID: 21294581 [Abstract] [Full Text] [Related]
15. Hydrolysis of soybean isoflavones by Debaryomyces hansenii UFV-1 immobilised cells and free β-glucosidase. Maitan-Alfenas GP, de A Lage LG, de Almeida MN, Visser EM, de Rezende ST, Guimarães VM. Food Chem; 2014 Mar 01; 146():429-36. PubMed ID: 24176363 [Abstract] [Full Text] [Related]
16. Hydrolysis of soy isoflavone glycosides by recombinant beta-glucosidase from hyperthermophile Thermotoga maritima. Xue Y, Yu J, Song X. J Ind Microbiol Biotechnol; 2009 Nov 01; 36(11):1401-8. PubMed ID: 19693552 [Abstract] [Full Text] [Related]
17. Characterization of a β-glucosidase from Sulfolobus solfataricus for isoflavone glycosides. Kim BN, Yeom SJ, Kim YS, Oh DK. Biotechnol Lett; 2012 Jan 01; 34(1):125-9. PubMed ID: 21898127 [Abstract] [Full Text] [Related]
18. Optimizing time and temperature of enzymatic conversion of isoflavone glucosides to aglycones in soy germ flour. Tipkanon S, Chompreeda P, Haruthaithanasan V, Suwonsichon T, Prinyawiwatkul W, Xu Z. J Agric Food Chem; 2010 Nov 10; 58(21):11340-5. PubMed ID: 20942463 [Abstract] [Full Text] [Related]
19. Enrichment of two isoflavone aglycones in black soymilk by using spent coffee grounds as an immobiliser for β-glucosidase. Chen KI, Lo YC, Liu CW, Yu RC, Chou CC, Cheng KC. Food Chem; 2013 Aug 15; 139(1-4):79-85. PubMed ID: 23561081 [Abstract] [Full Text] [Related]
20. Deglycosylation patterns of isoflavones in soybean extracts inoculated with two enzymatically different strains of lactobacillus species. Lim YJ, Lim B, Kim HY, Kwon SJ, Eom SH. Enzyme Microb Technol; 2020 Jan 15; 132():109394. PubMed ID: 31731960 [Abstract] [Full Text] [Related] Page: [Next] [New Search]