These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
291 related items for PubMed ID: 25398172
1. A novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: application to robot control. Ma J, Zhang Y, Cichocki A, Matsuno F. IEEE Trans Biomed Eng; 2015 Mar; 62(3):876-89. PubMed ID: 25398172 [Abstract] [Full Text] [Related]
3. Hybrid Brain-Computer Interface (BCI) based on the EEG and EOG signals. Jiang J, Zhou Z, Yin E, Yu Y, Hu D. Biomed Mater Eng; 2014 Mar; 24(6):2919-25. PubMed ID: 25226998 [Abstract] [Full Text] [Related]
4. Enhancing brain-machine interface (BMI) control of a hand exoskeleton using electrooculography (EOG). Witkowski M, Cortese M, Cempini M, Mellinger J, Vitiello N, Soekadar SR. J Neuroeng Rehabil; 2014 Dec 16; 11():165. PubMed ID: 25510922 [Abstract] [Full Text] [Related]
7. Automatic removal of eye-movement and blink artifacts from EEG signals. Gao JF, Yang Y, Lin P, Wang P, Zheng CX. Brain Topogr; 2010 Mar 16; 23(1):105-14. PubMed ID: 20039116 [Abstract] [Full Text] [Related]
8. An EEG/EOG-based hybrid brain-neural computer interaction (BNCI) system to control an exoskeleton for the paralyzed hand. Soekadar SR, Witkowski M, Vitiello N, Birbaumer N. Biomed Tech (Berl); 2015 Jun 16; 60(3):199-205. PubMed ID: 25490027 [Abstract] [Full Text] [Related]
9. Online removal of eye movement and blink EEG artifacts using a high-speed eye tracker. Noureddin B, Lawrence PD, Birch GE. IEEE Trans Biomed Eng; 2012 Aug 16; 59(8):2103-10. PubMed ID: 21278013 [Abstract] [Full Text] [Related]
10. Human-machine interfaces based on EMG and EEG applied to robotic systems. Ferreira A, Celeste WC, Cheein FA, Bastos-Filho TF, Sarcinelli-Filho M, Carelli R. J Neuroeng Rehabil; 2008 Mar 26; 5():10. PubMed ID: 18366775 [Abstract] [Full Text] [Related]
13. A High Performance Spelling System based on EEG-EOG Signals With Visual Feedback. Lee MH, Williamson J, Won DO, Fazli S, Lee SW. IEEE Trans Neural Syst Rehabil Eng; 2018 Jul 26; 26(7):1443-1459. PubMed ID: 29985154 [Abstract] [Full Text] [Related]
14. A test of four EOG correction methods using an improved validation technique. Pham TT, Croft RJ, Cadusch PJ, Barry RJ. Int J Psychophysiol; 2011 Feb 26; 79(2):203-10. PubMed ID: 21034784 [Abstract] [Full Text] [Related]
15. The designs and applications of a scanning interface with electrical signal detection on the scalp for the severely disabled. Lin CS, Lin JC, Huang YC, Lai YC, Chang HC. Comput Methods Programs Biomed; 2015 Nov 26; 122(2):207-14. PubMed ID: 26256069 [Abstract] [Full Text] [Related]
18. Human-Machine Interface: Multiclass Classification by Machine Learning on 1D EOG Signals for the Control of an Omnidirectional Robot. Pérez-Reynoso FD, Rodríguez-Guerrero L, Salgado-Ramírez JC, Ortega-Palacios R. Sensors (Basel); 2021 Aug 31; 21(17):. PubMed ID: 34502773 [Abstract] [Full Text] [Related]
19. Tracking eye fixations with electroocular and electroencephalographic recordings. Joyce CA, Gorodnitsky IF, King JW, Kutas M. Psychophysiology; 2002 Sep 31; 39(5):607-18. PubMed ID: 12236327 [Abstract] [Full Text] [Related]