These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


195 related items for PubMed ID: 25406894

  • 61. Scalable graphene field-effect sensors for specific protein detection.
    Saltzgaber G, Wojcik P, Sharf T, Leyden MR, Wardini JL, Heist CA, Adenuga AA, Remcho VT, Minot ED.
    Nanotechnology; 2013 Sep 06; 24(35):355502. PubMed ID: 23917462
    [Abstract] [Full Text] [Related]

  • 62. Molecular design for enhanced sensitivity of a FRET aptasensor built on the graphene oxide surface.
    Ueno Y, Furukawa K, Matsuo K, Inoue S, Hayashi K, Hibino H.
    Chem Commun (Camb); 2013 Nov 14; 49(88):10346-8. PubMed ID: 23985796
    [Abstract] [Full Text] [Related]

  • 63. Recent advances in aptasensors based on graphene and graphene-like nanomaterials.
    Ping J, Zhou Y, Wu Y, Papper V, Boujday S, Marks RS, Steele TW.
    Biosens Bioelectron; 2015 Feb 15; 64():373-85. PubMed ID: 25261843
    [Abstract] [Full Text] [Related]

  • 64. A general strategy to create RNA aptamer sensors using "regulated" graphene oxide adsorption.
    Song J, Lau PS, Liu M, Shuang S, Dong C, Li Y.
    ACS Appl Mater Interfaces; 2014 Dec 24; 6(24):21806-12. PubMed ID: 24992732
    [Abstract] [Full Text] [Related]

  • 65. Screening and identification of DNA aptamers against T-2 toxin assisted by graphene oxide.
    Chen X, Huang Y, Duan N, Wu S, Xia Y, Ma X, Zhu C, Jiang Y, Wang Z.
    J Agric Food Chem; 2014 Oct 22; 62(42):10368-74. PubMed ID: 25265190
    [Abstract] [Full Text] [Related]

  • 66. Nanoplasmonic detection of adenosine triphosphate by aptamer regulated self-catalytic growth of single gold nanoparticles.
    Liu Q, Jing C, Zheng X, Gu Z, Li D, Li DW, Huang Q, Long YT, Fan C.
    Chem Commun (Camb); 2012 Oct 07; 48(77):9574-6. PubMed ID: 22871726
    [Abstract] [Full Text] [Related]

  • 67. Solid-state label-free integrated aptasensor based on graphene-mesoporous silica-gold nanoparticle hybrids and silver microspheres.
    Guo S, Du Y, Yang X, Dong S, Wang E.
    Anal Chem; 2011 Oct 15; 83(20):8035-40. PubMed ID: 21910432
    [Abstract] [Full Text] [Related]

  • 68. Graphene-based fully integrated portable nanosensing system for on-line detection of cytokine biomarkers in saliva.
    Hao Z, Pan Y, Shao W, Lin Q, Zhao X.
    Biosens Bioelectron; 2019 Jun 01; 134():16-23. PubMed ID: 30952012
    [Abstract] [Full Text] [Related]

  • 69. Immobilization-free screening of aptamers assisted by graphene oxide.
    Park JW, Tatavarty R, Kim DW, Jung HT, Gu MB.
    Chem Commun (Camb); 2012 Feb 18; 48(15):2071-3. PubMed ID: 22143382
    [Abstract] [Full Text] [Related]

  • 70. A novel graphene oxide-based fluorescent nanosensor for selective detection of Fe(3+) with a wide linear concentration and its application in logic gate.
    He L, Li J, Xin JH.
    Biosens Bioelectron; 2015 Aug 15; 70():69-73. PubMed ID: 25794960
    [Abstract] [Full Text] [Related]

  • 71. Nicking endonuclease-assisted signal amplification of a split molecular aptamer beacon for biomolecule detection using graphene oxide as a sensing platform.
    Li X, Ding X, Fan J.
    Analyst; 2015 Dec 07; 140(23):7918-25. PubMed ID: 26502364
    [Abstract] [Full Text] [Related]

  • 72. Self-assembled electrical biodetector based on reduced graphene oxide.
    Kurkina T, Sundaram S, Sundaram RS, Re F, Masserini M, Kern K, Balasubramanian K.
    ACS Nano; 2012 Jun 26; 6(6):5514-20. PubMed ID: 22545858
    [Abstract] [Full Text] [Related]

  • 73. Thermo-responsive molecular switches for ATP using hairpin DNA aptamers.
    Goda T, Miyahara Y.
    Biosens Bioelectron; 2011 May 15; 26(9):3949-52. PubMed ID: 21419618
    [Abstract] [Full Text] [Related]

  • 74. Graphene-nucleic acid biointerface-engineered biosensors with tunable dynamic range.
    Zhao Z, Yang H, Zhao W, Deng S, Zhang K, Deng R, He Q, Gao H, Li J.
    J Mater Chem B; 2020 Apr 29; 8(16):3623-3630. PubMed ID: 31934712
    [Abstract] [Full Text] [Related]

  • 75. Carbon nanomaterials-based electrochemical aptasensors.
    Wang Z, Yu J, Gui R, Jin H, Xia Y.
    Biosens Bioelectron; 2016 May 15; 79():136-49. PubMed ID: 26703992
    [Abstract] [Full Text] [Related]

  • 76. Photoluminescent graphene oxide ink to print sensors onto microporous membranes for versatile visualization bioassays.
    Mei Q, Zhang Z.
    Angew Chem Int Ed Engl; 2012 Jun 04; 51(23):5602-6. PubMed ID: 22539356
    [No Abstract] [Full Text] [Related]

  • 77. Quantum dots electrochemical aptasensor based on three-dimensionally ordered macroporous gold film for the detection of ATP.
    Zhou J, Huang H, Xuan J, Zhang J, Zhu JJ.
    Biosens Bioelectron; 2010 Oct 15; 26(2):834-40. PubMed ID: 20886696
    [Abstract] [Full Text] [Related]

  • 78. Carcino-embryonic antigen detection based on fluorescence resonance energy transfer between quantum dots and graphene oxide.
    Zhou ZM, Zhou J, Chen J, Yu RN, Zhang MZ, Song JT, Zhao YD.
    Biosens Bioelectron; 2014 Sep 15; 59():397-403. PubMed ID: 24768819
    [Abstract] [Full Text] [Related]

  • 79. An aptasensor for sensitive detection of human breast cancer cells by using porous GO/Au composites and porous PtFe alloy as effective sensing platform and signal amplification labels.
    Yan M, Sun G, Liu F, Lu J, Yu J, Song X.
    Anal Chim Acta; 2013 Oct 10; 798():33-9. PubMed ID: 24070481
    [Abstract] [Full Text] [Related]

  • 80. Quantitative detection of potassium ions and adenosine triphosphate via a nanochannel-based electrochemical platform coupled with G-quadruplex aptamers.
    Yu J, Zhang L, Xu X, Liu S.
    Anal Chem; 2014 Nov 04; 86(21):10741-8. PubMed ID: 25333881
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.