These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


890 related items for PubMed ID: 25409107

  • 21. Sleep homeostasis in the rat in the light and dark period.
    Vyazovskiy VV, Achermann P, Tobler I.
    Brain Res Bull; 2007 Sep 14; 74(1-3):37-44. PubMed ID: 17683787
    [Abstract] [Full Text] [Related]

  • 22. Daily infusion of melatonin entrains circadian activity rhythms in the diurnal rodent Arvicanthis ansorgei.
    Slotten HA, Krekling S, Sicard B, Pévet P.
    Behav Brain Res; 2002 Jun 15; 133(1):11-9. PubMed ID: 12048170
    [Abstract] [Full Text] [Related]

  • 23. Sleep responses to light and dark are shaped by early experience.
    Prichard JR, Fahy JL, Obermeyer WH, Behan M, Benca RM.
    Behav Neurosci; 2004 Dec 15; 118(6):1262-73. PubMed ID: 15598135
    [Abstract] [Full Text] [Related]

  • 24. Homeostatic response to sleep/rest deprivation by constant water flow in larval zebrafish in both dark and light conditions.
    Aho V, Vainikka M, Puttonen HAJ, Ikonen HMK, Salminen T, Panula P, Porkka-Heiskanen T, Wigren HK.
    J Sleep Res; 2017 Jun 15; 26(3):394-400. PubMed ID: 28251715
    [Abstract] [Full Text] [Related]

  • 25. Circadian rhythms of sleep and wakefulness in mice: analysis using long-term automated recording of sleep.
    Richardson GS, Moore-Ede MC, Czeisler CA, Dement WC.
    Am J Physiol; 1985 Mar 15; 248(3 Pt 2):R320-30. PubMed ID: 3838419
    [Abstract] [Full Text] [Related]

  • 26. Effects of circadian phase and duration of sleep deprivation on sleep and EEG power spectra in the cat.
    Lancel M, van Riezen H, Glatt A.
    Brain Res; 1991 May 10; 548(1-2):206-14. PubMed ID: 1868336
    [Abstract] [Full Text] [Related]

  • 27. Blue light at night acutely impairs glucose tolerance and increases sugar intake in the diurnal rodent Arvicanthis ansorgei in a sex-dependent manner.
    Masís-Vargas A, Hicks D, Kalsbeek A, Mendoza J.
    Physiol Rep; 2019 Oct 10; 7(20):e14257. PubMed ID: 31646762
    [Abstract] [Full Text] [Related]

  • 28. Homeostatic regulation of sleep in arrhythmic Siberian hamsters.
    Larkin JE, Yokogawa T, Heller HC, Franken P, Ruby NF.
    Am J Physiol Regul Integr Comp Physiol; 2004 Jul 10; 287(1):R104-11. PubMed ID: 14962826
    [Abstract] [Full Text] [Related]

  • 29. Response of the sleep-wake rhythm to an 8-hour advance of the light-dark cycle in the rat.
    Sei H, Kiuchi T, Chang HY, Seno H, Sano A, Morita Y.
    Chronobiol Int; 1994 Oct 10; 11(5):293-300. PubMed ID: 7828212
    [Abstract] [Full Text] [Related]

  • 30. Dim light at night does not disrupt timing or quality of sleep in mice.
    Borniger JC, Weil ZM, Zhang N, Nelson RJ.
    Chronobiol Int; 2013 Oct 10; 30(8):1016-23. PubMed ID: 23837748
    [Abstract] [Full Text] [Related]

  • 31. Estradiol modulates recovery of REM sleep in a time-of-day-dependent manner.
    Schwartz MD, Mong JA.
    Am J Physiol Regul Integr Comp Physiol; 2013 Aug 01; 305(3):R271-80. PubMed ID: 23678032
    [Abstract] [Full Text] [Related]

  • 32. Circadian sleep-wake cycle organization in squirrel monkeys.
    Wexler DB, Moore-Ede MC.
    Am J Physiol; 1985 Mar 01; 248(3 Pt 2):R353-62. PubMed ID: 3976909
    [Abstract] [Full Text] [Related]

  • 33. Phenotype of Per1- and Per2-expressing neurons in the suprachiasmatic nucleus of a diurnal rodent (Arvicanthis ansorgei): comparison with a nocturnal species, the rat.
    Dardente H, Klosen P, Caldelas I, Pévet P, Masson-Pévet M.
    Cell Tissue Res; 2002 Oct 01; 310(1):85-92. PubMed ID: 12242487
    [Abstract] [Full Text] [Related]

  • 34. Sleep EEG spectral analysis in a diurnal rodent: Eutamias sibiricus.
    Dijk DJ, Daan S.
    J Comp Physiol A; 1989 Oct 01; 165(2):205-15. PubMed ID: 2746549
    [Abstract] [Full Text] [Related]

  • 35. REM sleep phase preference in the crepuscular Octodon degus assessed by selective REM sleep deprivation.
    Ocampo-Garcés A, Hernández F, Palacios AG.
    Sleep; 2013 Aug 01; 36(8):1247-56. PubMed ID: 23904685
    [Abstract] [Full Text] [Related]

  • 36. Interrelations and circadian changes of electroencephalogram frequencies under baseline conditions and constant sleep pressure in the rat.
    Yasenkov R, Deboer T.
    Neuroscience; 2011 Apr 28; 180():212-21. PubMed ID: 21303684
    [Abstract] [Full Text] [Related]

  • 37. The effects of sleep deprivation in humans: topographical electroencephalogram changes in non-rapid eye movement (NREM) sleep versus REM sleep.
    Marzano C, Ferrara M, Curcio G, De Gennaro L.
    J Sleep Res; 2010 Jun 28; 19(2):260-8. PubMed ID: 19845849
    [Abstract] [Full Text] [Related]

  • 38. The circadian clock gene Csnk1e regulates rapid eye movement sleep amount, and nonrapid eye movement sleep architecture in mice.
    Zhou L, Bryant CD, Loudon A, Palmer AA, Vitaterna MH, Turek FW.
    Sleep; 2014 Apr 01; 37(4):785-93, 793A-793C. PubMed ID: 24744456
    [Abstract] [Full Text] [Related]

  • 39. Decreased REM sleep and altered circadian sleep regulation in mice lacking vasoactive intestinal polypeptide.
    Hu WP, Li JD, Colwell CS, Zhou QY.
    Sleep; 2011 Jan 01; 34(1):49-56. PubMed ID: 21203371
    [Abstract] [Full Text] [Related]

  • 40. Daily and circadian expression of neuropeptides in the suprachiasmatic nuclei of nocturnal and diurnal rodents.
    Dardente H, Menet JS, Challet E, Tournier BB, Pévet P, Masson-Pévet M.
    Brain Res Mol Brain Res; 2004 May 19; 124(2):143-51. PubMed ID: 15135222
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 45.