These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
129 related items for PubMed ID: 25409871
1. Environmental effects on germination phenology of co-occurring eucalypts: implications for regeneration under climate change. Rawal DS, Kasel S, Keatley MR, Nitschke CR. Int J Biometeorol; 2015 Sep; 59(9):1237-52. PubMed ID: 25409871 [Abstract] [Full Text] [Related]
3. Relationships of intra-annual stem growth with climate indicate distinct growth niches for two co-occurring temperate eucalypts. Hinko-Najera N, Najera Umaña JC, Smith MG, Löw M, Griebel A, Bennett LT. Sci Total Environ; 2019 Nov 10; 690():991-1004. PubMed ID: 31302562 [Abstract] [Full Text] [Related]
4. Interactions between warming and soil moisture increase overlap in reproductive phenology among species in an alpine meadow. Zhu J, Zhang Y, Wang W. Biol Lett; 2016 Jul 10; 12(7):. PubMed ID: 27405376 [Abstract] [Full Text] [Related]
5. Will changes in phenology track climate change? A study of growth initiation timing in coast Douglas-fir. Ford KR, Harrington CA, Bansal S, Gould PJ, St Clair JB. Glob Chang Biol; 2016 Nov 10; 22(11):3712-3723. PubMed ID: 27104650 [Abstract] [Full Text] [Related]
6. Effects of predicted future and current atmospheric temperature and [CO2] and high and low soil moisture on gas exchange and growth of Pinus taeda seedlings at cool and warm sites in the species range. Wertin TM, McGuire MA, Teskey RO. Tree Physiol; 2012 Jul 10; 32(7):847-58. PubMed ID: 22696270 [Abstract] [Full Text] [Related]
7. Range size and growth temperature influence Eucalyptus species responses to an experimental heatwave. Aspinwall MJ, Pfautsch S, Tjoelker MG, Vårhammar A, Possell M, Drake JE, Reich PB, Tissue DT, Atkin OK, Rymer PD, Dennison S, Van Sluyter SC. Glob Chang Biol; 2019 May 10; 25(5):1665-1684. PubMed ID: 30746837 [Abstract] [Full Text] [Related]
8. Phenology of epigeous macrofungi found in red gum woodlands. Newbound M, McCarthy M, Lebel T. Fungal Biol; 2010 May 10; 114(2-3):171-8. PubMed ID: 20943127 [Abstract] [Full Text] [Related]
9. Variation in the seasonal germination niche across an elevational gradient: the role of germination cueing in current and future climates. Gremer JR, Chiono A, Suglia E, Bontrager M, Okafor L, Schmitt J. Am J Bot; 2020 Feb 10; 107(2):350-363. PubMed ID: 32056208 [Abstract] [Full Text] [Related]
10. Rainfall, not soil temperature, will limit the seed germination of dry forest species with climate change. Dantas BF, Moura MSB, Pelacani CR, Angelotti F, Taura TA, Oliveira GM, Bispo JS, Matias JR, Silva FFS, Pritchard HW, Seal CE. Oecologia; 2020 Feb 10; 192(2):529-541. PubMed ID: 31863165 [Abstract] [Full Text] [Related]
11. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought. Lewis JD, Smith RA, Ghannoum O, Logan BA, Phillips NG, Tissue DT. Tree Physiol; 2013 May 10; 33(5):475-88. PubMed ID: 23677118 [Abstract] [Full Text] [Related]
12. Evidence of genomic adaptation to climate in Eucalyptus microcarpa: Implications for adaptive potential to projected climate change. Jordan R, Hoffmann AA, Dillon SK, Prober SM. Mol Ecol; 2017 Nov 10; 26(21):6002-6020. PubMed ID: 28862778 [Abstract] [Full Text] [Related]
13. The capacity to cope with climate warming declines from temperate to tropical latitudes in two widely distributed Eucalyptus species. Drake JE, Aspinwall MJ, Pfautsch S, Rymer PD, Reich PB, Smith RA, Crous KY, Tissue DT, Ghannoum O, Tjoelker MG. Glob Chang Biol; 2015 Jan 10; 21(1):459-72. PubMed ID: 25378195 [Abstract] [Full Text] [Related]
14. Interactive effects of elevated CO2 and drought on nocturnal water fluxes in Eucalyptus saligna. Zeppel MJ, Lewis JD, Medlyn B, Barton CV, Duursma RA, Eamus D, Adams MA, Phillips N, Ellsworth DS, Forster MA, Tissue DT. Tree Physiol; 2011 Sep 10; 31(9):932-44. PubMed ID: 21616926 [Abstract] [Full Text] [Related]
15. Native and exotic plant cover vary inversely along a climate gradient 11 years following stand-replacing wildfire in a dry coniferous forest, Oregon, USA. Dodson EK, Root HT. Glob Chang Biol; 2015 Feb 10; 21(2):666-75. PubMed ID: 25345790 [Abstract] [Full Text] [Related]
16. Air humidity as key determinant of morphogenesis and productivity of the rare temperate woodland fern Polystichum braunii. Schwerbrock R, Leuschner C. Plant Biol (Stuttg); 2016 Jul 10; 18(4):649-57. PubMed ID: 26891763 [Abstract] [Full Text] [Related]
17. Germination responses to current and future temperatures of four seeder shrubs across a latitudinal gradient in western Iberia. Chamorro D, Luna B, Moreno JM. Am J Bot; 2017 Jan 10; 104(1):83-91. PubMed ID: 28104590 [Abstract] [Full Text] [Related]
18. Patterns and variability in seedling carbon assimilation: implications for tree recruitment under climate change. Peltier DM, Ibáñez I. Tree Physiol; 2015 Jan 10; 35(1):71-85. PubMed ID: 25576758 [Abstract] [Full Text] [Related]
19. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades. Bjorkman AD, Elmendorf SC, Beamish AL, Vellend M, Henry GH. Glob Chang Biol; 2015 Dec 10; 21(12):4651-61. PubMed ID: 26216538 [Abstract] [Full Text] [Related]
20. Macroecology of Australian Tall Eucalypt Forests: Baseline Data from a Continental-Scale Permanent Plot Network. Wood SW, Prior LD, Stephens HC, Bowman DM. PLoS One; 2015 Dec 10; 10(9):e0137811. PubMed ID: 26368919 [Abstract] [Full Text] [Related] Page: [Next] [New Search]