These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


1306 related items for PubMed ID: 25410797

  • 1. Fluorescent cadmium telluride quantum dots embedded chitosan nanoparticles: a stable, biocompatible preparation for bio-imaging.
    Ghormade V, Gholap H, Kale S, Kulkarni V, Bhat S, Paknikar K.
    J Biomater Sci Polym Ed; 2015; 26(1):42-56. PubMed ID: 25410797
    [Abstract] [Full Text] [Related]

  • 2. The fluorescent interactions between amphiphilic chitosan derivatives and water-soluble quantum dots.
    Fei X, Yu M, Zhang B, Cao L, Yu L, Jia G, Zhou J.
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Jan 05; 152():343-51. PubMed ID: 26232578
    [Abstract] [Full Text] [Related]

  • 3. Microwave-assisted aqueous synthesis of highly luminescent carboxymethyl chitosan-coated CdTe/CdS quantum dots as fluorescent probe for live cell imaging.
    He Z, Zhu H, Zhou P.
    J Fluoresc; 2012 Jan 05; 22(1):193-9. PubMed ID: 21853257
    [Abstract] [Full Text] [Related]

  • 4. A novel method for fabricating hybrid biobased nanocomposites film with stable fluorescence containing CdTe quantum dots and montmorillonite-chitosan nanosheets.
    Guo Y, Ge X, Guan J, Wu L, Zhao F, Li H, Mu X, Jiang Y, Chen A.
    Carbohydr Polym; 2016 Jul 10; 145():13-9. PubMed ID: 27106146
    [Abstract] [Full Text] [Related]

  • 5. Preparation of strongly fluorescent silica nanoparticles of polyelectrolyte-protected cadmium telluride quantum dots and their application to cell toxicity and imaging.
    Tang JH, Xie L, Zhang B, Qiu T, Qi B, Xie HP.
    Anal Chim Acta; 2012 Mar 30; 720():112-7. PubMed ID: 22365128
    [Abstract] [Full Text] [Related]

  • 6. Study the damage of DNA molecules induced by three kinds of aqueous nanoparticles.
    Wang C, Gao X, Su X.
    Talanta; 2010 Jan 15; 80(3):1228-33. PubMed ID: 20006079
    [Abstract] [Full Text] [Related]

  • 7. Aqueous synthesis of highly stable CdTe/ZnS Core/Shell quantum dots for bioimaging.
    Saikia D, Chakravarty S, Sarma NS, Bhattacharjee S, Datta P, Adhikary NC.
    Luminescence; 2017 May 15; 32(3):401-408. PubMed ID: 27511527
    [Abstract] [Full Text] [Related]

  • 8. [The photological function of MPA coated CdTe QDs and their biocompatibility].
    Liu J, Zhu CL, Cao L, Lin L, Ge CW, Zhang TY.
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2009 Oct 15; 25(10):875-8. PubMed ID: 19811730
    [Abstract] [Full Text] [Related]

  • 9. Microarray analysis of the Escherichia coli response to CdTe-GSH Quantum Dots: understanding the bacterial toxicity of semiconductor nanoparticles.
    Monrás JP, Collao B, Molina-Quiroz RC, Pradenas GA, Saona LA, Durán-Toro V, Ordenes-Aenishanslins N, Venegas FA, Loyola DE, Bravo D, Calderón PF, Calderón IL, Vásquez CC, Chasteen TG, Lopez DA, Pérez-Donoso JM.
    BMC Genomics; 2014 Dec 12; 15(1):1099. PubMed ID: 25496196
    [Abstract] [Full Text] [Related]

  • 10. Facile synthesis and characterization of highly fluorescent and biocompatible N-acetyl-L-cysteine capped CdTe/CdS/ZnS core/shell/shell quantum dots in aqueous phase.
    Xiao Q, Huang S, Su W, Chan WH, Liu Y.
    Nanotechnology; 2012 Dec 14; 23(49):495717. PubMed ID: 23165590
    [Abstract] [Full Text] [Related]

  • 11. D-penicillamine capped cadmium telluride quantum dots as a novel fluorometric sensor of copper(II).
    Mohammad-Rezaei R, Razmi H, Abdolmohammad-Zadeh H.
    Luminescence; 2013 Dec 14; 28(4):503-9. PubMed ID: 23447377
    [Abstract] [Full Text] [Related]

  • 12. Ultraviolet radiation synthesis of water dispersed CdTe/CdS/ZnS core-shell-shell quantum dots with high fluorescence strength and biocompatibility.
    Xu B, Cai B, Liu M, Fan H.
    Nanotechnology; 2013 May 24; 24(20):205601. PubMed ID: 23598608
    [Abstract] [Full Text] [Related]

  • 13. Synthesis of highly luminescent and biocompatible CdTe/CdS/ZnS quantum dots using microwave irradiation: a comparative study of different ligands.
    He H, Sun X, Wang X, Xu H.
    Luminescence; 2014 Nov 24; 29(7):837-45. PubMed ID: 24436082
    [Abstract] [Full Text] [Related]

  • 14. In situ synthesis of highly luminescent glutathione-capped CdTe/ZnS quantum dots with biocompatibility.
    Liu YF, Yu JS.
    J Colloid Interface Sci; 2010 Nov 01; 351(1):1-9. PubMed ID: 20719328
    [Abstract] [Full Text] [Related]

  • 15. Non-covalent conjugation of CdTe QDs with lysozyme binding DNA for fluorescent sensing of lysozyme in complex biological sample.
    Li S, Gao Z, Shao N.
    Talanta; 2014 Nov 01; 129():86-92. PubMed ID: 25127568
    [Abstract] [Full Text] [Related]

  • 16. Highly luminescent chitosan-L-cysteine functionalized CdTe quantum dots film: synthesis and characterization.
    Kumar H, Srivastava R, Dutta PK.
    Carbohydr Polym; 2013 Sep 12; 97(2):327-34. PubMed ID: 23911453
    [Abstract] [Full Text] [Related]

  • 17. Long-term exposure to CdTe quantum dots causes functional impairments in live cells.
    Cho SJ, Maysinger D, Jain M, Röder B, Hackbarth S, Winnik FM.
    Langmuir; 2007 Feb 13; 23(4):1974-80. PubMed ID: 17279683
    [Abstract] [Full Text] [Related]

  • 18. Light-mediated effects of CdTe-MSA quantum dots on the autofluorescence of freshwater green microalgae: Spectroscopic studies.
    Kalnaitytė A, Bagdonas S.
    J Photochem Photobiol B; 2019 Oct 13; 199():111629. PubMed ID: 31610433
    [Abstract] [Full Text] [Related]

  • 19. Enhanced biocompatibility and biostability of CdTe quantum dots by facile surface-initiated dendritic polymerization.
    Zhou L, Gao C, Xu W, Wang X, Xu Y.
    Biomacromolecules; 2009 Jul 13; 10(7):1865-74. PubMed ID: 19496613
    [Abstract] [Full Text] [Related]

  • 20. Switch-on fluorescent strategy based on crystal violet-functionalized CdTe quantum dots for detecting L-cysteine and glutathione in water and urine.
    Sheng Z, Chen L.
    Anal Bioanal Chem; 2017 Oct 13; 409(26):6081-6090. PubMed ID: 28799001
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 66.