These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


125 related items for PubMed ID: 25416238

  • 1. Ctk1 function is necessary for full translation initiation activity in Saccharomyces cerevisiae.
    Coordes B, Brünger KM, Burger K, Soufi B, Horenk J, Eick D, Olsen JV, Sträßer K.
    Eukaryot Cell; 2015 Jan; 14(1):86-95. PubMed ID: 25416238
    [Abstract] [Full Text] [Related]

  • 2. The RNA polymerase II CTD kinase Ctk1 functions in translation elongation.
    Röther S, Strässer K.
    Genes Dev; 2007 Jun 01; 21(11):1409-21. PubMed ID: 17545469
    [Abstract] [Full Text] [Related]

  • 3. Internal initiation in Saccharomyces cerevisiae mediated by an initiator tRNA/eIF2-independent internal ribosome entry site element.
    Thompson SR, Gulyas KD, Sarnow P.
    Proc Natl Acad Sci U S A; 2001 Nov 06; 98(23):12972-7. PubMed ID: 11687653
    [Abstract] [Full Text] [Related]

  • 4. Dissecting eukaryotic translation and its control by ribosome density mapping.
    Arava Y, Boas FE, Brown PO, Herschlag D.
    Nucleic Acids Res; 2005 Nov 06; 33(8):2421-32. PubMed ID: 15860778
    [Abstract] [Full Text] [Related]

  • 5. Sphingoid base is required for translation initiation during heat stress in Saccharomyces cerevisiae.
    Meier KD, Deloche O, Kajiwara K, Funato K, Riezman H.
    Mol Biol Cell; 2006 Mar 06; 17(3):1164-75. PubMed ID: 16381812
    [Abstract] [Full Text] [Related]

  • 6. Phosphorylation by Cak1 regulates the C-terminal domain kinase Ctk1 in Saccharomyces cerevisiae.
    Ostapenko D, Solomon MJ.
    Mol Cell Biol; 2005 May 06; 25(10):3906-13. PubMed ID: 15870265
    [Abstract] [Full Text] [Related]

  • 7. Characterizing IGR IRES-mediated translation initiation for use in yeast cell-free protein synthesis.
    Hodgman CE, Jewett MC.
    N Biotechnol; 2014 Sep 25; 31(5):499-505. PubMed ID: 25017988
    [Abstract] [Full Text] [Related]

  • 8. Reconstitution of yeast translation elongation and termination in vitro utilizing CrPV IRES-containing mRNA.
    Abe T, Nagai R, Imataka H, Takeuchi-Tomita N.
    J Biochem; 2020 May 01; 167(5):441-450. PubMed ID: 32053165
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Mapping the translation initiation landscape of an S. cerevisiae gene using fluorescent proteins.
    Ben-Yehezkel T, Zur H, Marx T, Shapiro E, Tuller T.
    Genomics; 2013 Oct 01; 102(4):419-29. PubMed ID: 23726901
    [Abstract] [Full Text] [Related]

  • 11. Localization of a promoter in the putative internal ribosome entry site of the Saccharomyces cerevisiae TIF4631 gene.
    Vergé V, Vonlanthen M, Masson JM, Trachsel H, Altmann M.
    RNA; 2004 Feb 01; 10(2):277-86. PubMed ID: 14730026
    [Abstract] [Full Text] [Related]

  • 12. Cap-independent translation is required for starvation-induced differentiation in yeast.
    Gilbert WV, Zhou K, Butler TK, Doudna JA.
    Science; 2007 Aug 31; 317(5842):1224-7. PubMed ID: 17761883
    [Abstract] [Full Text] [Related]

  • 13. Translation complex profile sequencing to study the in vivo dynamics of mRNA-ribosome interactions during translation initiation, elongation and termination.
    Shirokikh NE, Archer SK, Beilharz TH, Powell D, Preiss T.
    Nat Protoc; 2017 Apr 31; 12(4):697-731. PubMed ID: 28253237
    [Abstract] [Full Text] [Related]

  • 14. Functions of eIF3 downstream of 48S assembly impact AUG recognition and GCN4 translational control.
    Nielsen KH, Szamecz B, Valásek L, Jivotovskaya A, Shin BS, Hinnebusch AG.
    EMBO J; 2004 Mar 10; 23(5):1166-77. PubMed ID: 14976554
    [Abstract] [Full Text] [Related]

  • 15. A quantitative model for mRNA translation in Saccharomyces cerevisiae.
    You T, Coghill GM, Brown AJ.
    Yeast; 2010 Oct 10; 27(10):785-800. PubMed ID: 20306461
    [Abstract] [Full Text] [Related]

  • 16. Conditional depletion of transcriptional kinases Ctk1 and Bur1 and effects on co-transcriptional spliceosome assembly and pre-mRNA splicing.
    Maudlin IE, Beggs JD.
    RNA Biol; 2021 Nov 12; 18(sup2):782-793. PubMed ID: 34705599
    [Abstract] [Full Text] [Related]

  • 17. Regulation of translation in eukaryotic systems.
    Kozak M.
    Annu Rev Cell Biol; 1992 Nov 12; 8():197-225. PubMed ID: 1335743
    [No Abstract] [Full Text] [Related]

  • 18. Structural basis for the transition from translation initiation to elongation by an 80S-eIF5B complex.
    Wang J, Wang J, Shin BS, Kim JR, Dever TE, Puglisi JD, Fernández IS.
    Nat Commun; 2020 Oct 06; 11(1):5003. PubMed ID: 33024099
    [Abstract] [Full Text] [Related]

  • 19. Requirement of rRNA methylation for 80S ribosome assembly on a cohort of cellular internal ribosome entry sites.
    Basu A, Das P, Chaudhuri S, Bevilacqua E, Andrews J, Barik S, Hatzoglou M, Komar AA, Mazumder B.
    Mol Cell Biol; 2011 Nov 06; 31(22):4482-99. PubMed ID: 21930789
    [Abstract] [Full Text] [Related]

  • 20. Translation initiation by factor-independent binding of eukaryotic ribosomes to internal ribosomal entry sites.
    Pisarev AV, Shirokikh NE, Hellen CU.
    C R Biol; 2005 Jul 06; 328(7):589-605. PubMed ID: 15992743
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.