These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Convergence Rates for the Constrained Sampling via Langevin Monte Carlo. Zhu Y. Entropy (Basel); 2023 Aug 18; 25(8):. PubMed ID: 37628264 [Abstract] [Full Text] [Related]
4. Variational method for estimating the rate of convergence of Markov-chain Monte Carlo algorithms. Casey FP, Waterfall JJ, Gutenkunst RN, Myers CR, Sethna JP. Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct 18; 78(4 Pt 2):046704. PubMed ID: 18999558 [Abstract] [Full Text] [Related]
5. A Bootstrap Metropolis-Hastings Algorithm for Bayesian Analysis of Big Data. Liang F, Kim J, Song Q. Technometrics; 2016 Oct 18; 58(3):604-318. PubMed ID: 29033469 [Abstract] [Full Text] [Related]
7. Searching for efficient Markov chain Monte Carlo proposal kernels. Yang Z, Rodríguez CE. Proc Natl Acad Sci U S A; 2013 Nov 26; 110(48):19307-12. PubMed ID: 24218600 [Abstract] [Full Text] [Related]
8. BAYESIAN INFERENCE OF STOCHASTIC REACTION NETWORKS USING MULTIFIDELITY SEQUENTIAL TEMPERED MARKOV CHAIN MONTE CARLO. Catanach TA, Vo HD, Munsky B. Int J Uncertain Quantif; 2020 Nov 26; 10(6):515-542. PubMed ID: 34007522 [Abstract] [Full Text] [Related]
9. Parallel Metropolis coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F. Bioinformatics; 2004 Feb 12; 20(3):407-15. PubMed ID: 14960467 [Abstract] [Full Text] [Related]
10. Fitting complex population models by combining particle filters with Markov chain Monte Carlo. Knape J, de Valpine P. Ecology; 2012 Feb 12; 93(2):256-63. PubMed ID: 22624307 [Abstract] [Full Text] [Related]
11. The Barker proposal: Combining robustness and efficiency in gradient-based MCMC. Livingstone S, Zanella G. J R Stat Soc Series B Stat Methodol; 2022 Apr 12; 84(2):496-523. PubMed ID: 35910401 [Abstract] [Full Text] [Related]
12. Bayesian Computational Methods for Sampling from the Posterior Distribution of a Bivariate Survival Model, Based on AMH Copula in the Presence of Right-Censored Data. Saraiva EF, Suzuki AK, Milan LA. Entropy (Basel); 2018 Aug 27; 20(9):. PubMed ID: 33265731 [Abstract] [Full Text] [Related]
13. Comprehensive benchmarking of Markov chain Monte Carlo methods for dynamical systems. Ballnus B, Hug S, Hatz K, Görlitz L, Hasenauer J, Theis FJ. BMC Syst Biol; 2017 Jun 24; 11(1):63. PubMed ID: 28646868 [Abstract] [Full Text] [Related]
14. Applying diffusion-based Markov chain Monte Carlo. Herbei R, Paul R, Berliner LM. PLoS One; 2017 Jun 24; 12(3):e0173453. PubMed ID: 28301529 [Abstract] [Full Text] [Related]
15. de Finetti Priors using Markov chain Monte Carlo computations. Bacallado S, Diaconis P, Holmes S. Stat Comput; 2015 Jul 01; 25(4):797-808. PubMed ID: 26412947 [Abstract] [Full Text] [Related]
16. A quasi-Monte Carlo Metropolis algorithm. Owen AB, Tribble SD. Proc Natl Acad Sci U S A; 2005 Jun 21; 102(25):8844-9. PubMed ID: 15956207 [Abstract] [Full Text] [Related]
18. Boosting Monte Carlo simulations of spin glasses using autoregressive neural networks. McNaughton B, Milošević MV, Perali A, Pilati S. Phys Rev E; 2020 May 21; 101(5-1):053312. PubMed ID: 32575304 [Abstract] [Full Text] [Related]
19. An algorithm for Monte Carlo estimation of genotype probabilities on complex pedigrees. Lin S, Thompson E, Wijsman E. Ann Hum Genet; 1994 Oct 21; 58(4):343-57. PubMed ID: 7864590 [Abstract] [Full Text] [Related]