These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


365 related items for PubMed ID: 25425021

  • 1. Lipid exchange and transfer on nanoparticle supported lipid bilayers: effect of defects, ionic strength, and size.
    Drazenovic J, Ahmed S, Tuzinkiewicz NM, Wunder SL.
    Langmuir; 2015 Jan 20; 31(2):721-31. PubMed ID: 25425021
    [Abstract] [Full Text] [Related]

  • 2. Nanoparticle-supported lipid bilayers as an in situ remediation strategy for hydrophobic organic contaminants in soils.
    Wang H, Kim B, Wunder SL.
    Environ Sci Technol; 2015 Jan 06; 49(1):529-36. PubMed ID: 25454259
    [Abstract] [Full Text] [Related]

  • 3. Formation and colloidal stability of DMPC supported lipid bilayers on SiO2 nanobeads.
    Savarala S, Ahmed S, Ilies MA, Wunder SL.
    Langmuir; 2010 Jul 20; 26(14):12081-8. PubMed ID: 20527833
    [Abstract] [Full Text] [Related]

  • 4. Supported lipid bilayer nanosystems: stabilization by undulatory-protrusion forces and destabilization by lipid bridging.
    Savarala S, Monson F, Ilies MA, Wunder SL.
    Langmuir; 2011 May 17; 27(10):5850-61. PubMed ID: 21500811
    [Abstract] [Full Text] [Related]

  • 5. Ionic strength and composition govern the elasticity of biological membranes. A study of model DMPC bilayers by force- and transmission IR spectroscopy.
    Šegota S, Vojta D, Pletikapić G, Baranović G.
    Chem Phys Lipids; 2015 Feb 17; 186():17-29. PubMed ID: 25447291
    [Abstract] [Full Text] [Related]

  • 6. Formation of lipid sheaths around nanoparticle-supported lipid bilayers.
    Ahmed S, Savarala S, Chen Y, Bothun G, Wunder SL.
    Small; 2012 Jun 11; 8(11):1740-51. PubMed ID: 22434657
    [Abstract] [Full Text] [Related]

  • 7. Lipid transfer between charged supported lipid bilayers and oppositely charged vesicles.
    Kunze A, Svedhem S, Kasemo B.
    Langmuir; 2009 May 05; 25(9):5146-58. PubMed ID: 19326873
    [Abstract] [Full Text] [Related]

  • 8. Controlling spatial distribution of functional lipids in a supported lipid bilayer prepared from vesicles.
    Lee HS, Kim YC, Wang Z, Brenner JS, Muzykantov VR, Myerson JW, Composto RJ.
    J Colloid Interface Sci; 2024 Jun 15; 664():1042-1055. PubMed ID: 38522178
    [Abstract] [Full Text] [Related]

  • 9. Effect of curvature on nanoparticle supported lipid bilayers investigated by Raman spectroscopy.
    Ahmed S, Nikolov Z, Wunder SL.
    J Phys Chem B; 2011 Nov 17; 115(45):13181-90. PubMed ID: 21932795
    [Abstract] [Full Text] [Related]

  • 10. Effect of lamellarity and size on calorimetric phase transitions in single component phosphatidylcholine vesicles.
    Drazenovic J, Wang H, Roth K, Zhang J, Ahmed S, Chen Y, Bothun G, Wunder SL.
    Biochim Biophys Acta; 2015 Feb 17; 1848(2):532-43. PubMed ID: 25445167
    [Abstract] [Full Text] [Related]

  • 11. Stabilization of soft lipid colloids: competing effects of nanoparticle decoration and supported lipid bilayer formation.
    Savarala S, Ahmed S, Ilies MA, Wunder SL.
    ACS Nano; 2011 Apr 26; 5(4):2619-28. PubMed ID: 21381770
    [Abstract] [Full Text] [Related]

  • 12. Gel-to-fluid phase transformations in solid-supported phospholipid bilayers assembled by the Langmuir-Blodgett technique: effect of the Langmuir monolayer phase state and molecular density.
    Ramkaran M, Badia A.
    J Phys Chem B; 2014 Aug 14; 118(32):9708-21. PubMed ID: 25059993
    [Abstract] [Full Text] [Related]

  • 13. Influence of phase separating lipids on supported lipid bilayer formation at SiO2 surfaces.
    Sundh M, Svedhem S, Sutherland DS.
    Phys Chem Chem Phys; 2010 Jan 14; 12(2):453-60. PubMed ID: 20023823
    [Abstract] [Full Text] [Related]

  • 14. Dissipation-enhanced quartz crystal microbalance studies on the experimental parameters controlling the formation of supported lipid bilayers.
    Seantier B, Breffa C, Félix O, Decher G.
    J Phys Chem B; 2005 Nov 24; 109(46):21755-65. PubMed ID: 16853826
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Disruption of supported lipid bilayers by semihydrophobic nanoparticles.
    Jing B, Zhu Y.
    J Am Chem Soc; 2011 Jul 20; 133(28):10983-9. PubMed ID: 21631111
    [Abstract] [Full Text] [Related]

  • 17. Gauging the effect of impurities on lipid bilayer phase transition temperature.
    Koan MM, Blanchard GJ.
    J Phys Chem B; 2006 Aug 24; 110(33):16584-90. PubMed ID: 16913793
    [Abstract] [Full Text] [Related]

  • 18. Application of pressure perturbation calorimetry to lipid bilayers.
    Heerklotz H, Seelig J.
    Biophys J; 2002 Mar 24; 82(3):1445-52. PubMed ID: 11867459
    [Abstract] [Full Text] [Related]

  • 19. Calcein release behavior from liposomal bilayer; influence of physicochemical/mechanical/structural properties of lipids.
    Maherani B, Arab-Tehrany E, Kheirolomoom A, Geny D, Linder M.
    Biochimie; 2013 Nov 24; 95(11):2018-33. PubMed ID: 23871914
    [Abstract] [Full Text] [Related]

  • 20. A two-photon view of an enzyme at work: Crotalus atrox venom PLA2 interaction with single-lipid and mixed-lipid giant unilamellar vesicles.
    Sanchez SA, Bagatolli LA, Gratton E, Hazlett TL.
    Biophys J; 2002 Apr 24; 82(4):2232-43. PubMed ID: 11916878
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 19.