These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
322 related items for PubMed ID: 25428017
1. Cryopreservation of red blood cells. Lagerberg JW. Methods Mol Biol; 2015; 1257():353-67. PubMed ID: 25428017 [Abstract] [Full Text] [Related]
3. Prolonged post-thaw shelf life of red cells frozen without prefreeze removal of excess glycerol. Lelkens CC, de Korte D, Lagerberg JW. Vox Sang; 2015 Apr; 108(3):219-25. PubMed ID: 25471217 [Abstract] [Full Text] [Related]
4. Altered processing of thawed red cells to improve the in vitro quality during postthaw storage at 4 degrees C. Lagerberg JW, Truijens-de Lange R, de Korte D, Verhoeven AJ. Transfusion; 2007 Dec; 47(12):2242-9. PubMed ID: 17714415 [Abstract] [Full Text] [Related]
5. The effects of cryopreservation on red blood cell microvesiculation, phosphatidylserine externalization, and CD47 expression. Holovati JL, Wong KA, Webster JM, Acker JP. Transfusion; 2008 Aug; 48(8):1658-68. PubMed ID: 18482179 [Abstract] [Full Text] [Related]
6. Effect of cryopreservation on a rare McLeod donor red blood cell concentrate. Turner TR, Clarke G, Denomme GA, Skeate R, Acker JP. Immunohematology; 2021 Jun; 37(2):78-83. PubMed ID: 34170642 [Abstract] [Full Text] [Related]
7. Successful in vivo recovery and extended storage of additive solution (AS)-5 red blood cells after deglycerolization and resuspension in AS-3 for 15 days with an automated closed system. Bandarenko N, Cancelas J, Snyder EL, Hay SN, Rugg N, Corda T, Joines AD, Gormas JF, Pratt GP, Kowalsky R, Rose M, Rose L, Foley J, Popovsky MA. Transfusion; 2007 Apr; 47(4):680-6. PubMed ID: 17381627 [Abstract] [Full Text] [Related]
8. Synergistic effects of liposomes, trehalose, and hydroxyethyl starch for cryopreservation of human erythrocytes. Stoll C, Holovati JL, Acker JP, Wolkers WF. Biotechnol Prog; 2012 Apr; 28(2):364-71. PubMed ID: 22275294 [Abstract] [Full Text] [Related]
9. Osmotic tolerance limits of red blood cells from umbilical cord blood. Zhurova M, Lusianti RE, Higgins AZ, Acker JP. Cryobiology; 2014 Aug; 69(1):48-54. PubMed ID: 24836371 [Abstract] [Full Text] [Related]
10. Automation of the glycerolization of red blood cells with the high-separation bowl in the Haemonetics ACP 215 instrument. Valeri CR, Ragno G, Van Houten P, Rose L, Rose M, Egozy Y, Popovsky MA. Transfusion; 2005 Oct; 45(10):1621-7. PubMed ID: 16181213 [Abstract] [Full Text] [Related]
11. Stability after thawing of RBCs frozen with the high- and low-glycerol method. Lelkens CC, Noorman F, Koning JG, Truijens-de Lange R, Stekkinger PS, Bakker JC, Lagerberg JW, Brand A, Verhoeven AJ. Transfusion; 2003 Feb; 43(2):157-64. PubMed ID: 12559010 [Abstract] [Full Text] [Related]
12. Apatite nanoparticles strongly improve red blood cell cryopreservation by mediating trehalose delivery via enhanced membrane permeation. Stefanic M, Ward K, Tawfik H, Seemann R, Baulin V, Guo Y, Fleury JB, Drouet C. Biomaterials; 2017 Sep; 140():138-149. PubMed ID: 28649014 [Abstract] [Full Text] [Related]
13. Red blood cell phenotype fidelity following glycerol cryopreservation optimized for research purposes. Rogers SC, Dosier LB, McMahon TJ, Zhu H, Timm D, Zhang H, Herbert J, Atallah J, Palmer GM, Cook A, Ernst M, Prakash J, Terng M, Towfighi P, Doctor R, Said A, Joens MS, Fitzpatrick JAJ, Hanna G, Lin X, Reisz JA, Nemkov T, D'Alessandro A, Doctor A. PLoS One; 2018 Sep; 13(12):e0209201. PubMed ID: 30576340 [Abstract] [Full Text] [Related]
14. Small molecule ice recrystallization inhibitors mitigate red blood cell lysis during freezing, transient warming and thawing. Briard JG, Poisson JS, Turner TR, Capicciotti CJ, Acker JP, Ben RN. Sci Rep; 2016 Mar 29; 6():23619. PubMed ID: 27021850 [Abstract] [Full Text] [Related]
15. Red blood cell processing for cryopreservation: from fresh blood to deglycerolization. Pallotta V, D'Amici GM, D'Alessandro A, Rossetti R, Zolla L. Blood Cells Mol Dis; 2012 Apr 15; 48(4):226-32. PubMed ID: 22424604 [Abstract] [Full Text] [Related]
16. A Canadian perspective on the use and preparation of cryopreserved red cell concentrates. Turner TR, Acker JP. Transfus Apher Sci; 2020 Aug 15; 59(4):102853. PubMed ID: 32651009 [Abstract] [Full Text] [Related]
17. Extended storage of AS-1 and AS-3 leukoreduced red blood cells for 15 days after deglycerolization and resuspension in AS-3 using an automated closed system. Bandarenko N, Hay SN, Holmberg J, Whitley P, Taylor HL, Moroff G, Rose L, Kowalsky R, Brumit M, Rose M, Sawyer S, Johnson A, McNeil D, Popovsky MA. Transfusion; 2004 Nov 15; 44(11):1656-62. PubMed ID: 15504173 [Abstract] [Full Text] [Related]
18. Utilization and quality of cryopreserved red blood cells in transfusion medicine. Henkelman S, Noorman F, Badloe JF, Lagerberg JW. Vox Sang; 2015 Feb 15; 108(2):103-12. PubMed ID: 25471135 [Abstract] [Full Text] [Related]
19. Biochemical stabilization enhances red blood cell recovery and stability following cryopreservation. Wagner CT, Martowicz ML, Livesey SA, Connor J. Cryobiology; 2002 Oct 15; 45(2):153-66. PubMed ID: 12482381 [Abstract] [Full Text] [Related]
20. Cryopreservation of rare pediatric red blood cells for support following bone marrow transplant. Kelly K, Helander L, Hazegh K, Stanley C, Moss R, Mack S, Sanders ML, Gurley J, McKinney C, Dumont LJ, Annen K. Transfusion; 2022 May 15; 62(5):954-960. PubMed ID: 35403731 [Abstract] [Full Text] [Related] Page: [Next] [New Search]