These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
308 related items for PubMed ID: 25429404
1. Highly sensitive surface-enhanced Raman scattering based on multi-dimensional plasmonic coupling in Au-graphene-Ag hybrids. Zhao Y, Zeng W, Tao Z, Xiong P, Qu Y, Zhu Y. Chem Commun (Camb); 2015 Jan 18; 51(5):866-9. PubMed ID: 25429404 [Abstract] [Full Text] [Related]
2. Toward highly sensitive surface-enhanced Raman scattering: the design of a 3D hybrid system with monolayer graphene sandwiched between silver nanohole arrays and gold nanoparticles. Zhao Y, Yang D, Li X, Liu Y, Hu X, Zhou D, Lu Y. Nanoscale; 2017 Jan 19; 9(3):1087-1096. PubMed ID: 27973628 [Abstract] [Full Text] [Related]
3. Multi-dimensional plasmonic coupling system for efficient enrichment and ultrasensitive label-free SERS detection of bilirubin based on graphene oxide-Au nanostars and Au@Ag nanoparticles. Zhao W, Yang S, Zhang D, Zhou T, Huang J, Gao M, Zhang X, Liu Y, Yang J. J Colloid Interface Sci; 2023 Sep 15; 646():872-882. PubMed ID: 37235933 [Abstract] [Full Text] [Related]
4. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength. Kim K, Choi JY, Lee HB, Shin KS. J Chem Phys; 2011 Sep 28; 135(12):124705. PubMed ID: 21974550 [Abstract] [Full Text] [Related]
5. A facile and green method for synthesis of reduced graphene oxide/Ag hybrids as efficient surface enhanced Raman scattering platforms. Huang Q, Wang J, Wei W, Yan Q, Wu C, Zhu X. J Hazard Mater; 2015 Sep 28; 283():123-30. PubMed ID: 25262484 [Abstract] [Full Text] [Related]
6. Composite substrate of graphene/Ag nanoparticles coupled with a multilayer film for surface-enhanced Raman scattering biosensing. Yue W, Liu C, Zha Z, Liu R, Gao J, Shafi M, Feng J, Jiang S. Opt Express; 2022 Apr 11; 30(8):13226-13237. PubMed ID: 35472940 [Abstract] [Full Text] [Related]
7. A general and efficient method for decorating graphene sheets with metal nanoparticles based on the non-covalently functionalized graphene sheets with hyperbranched polymers. Li H, Han L, Cooper-White JJ, Kim I. Nanoscale; 2012 Feb 21; 4(4):1355-61. PubMed ID: 22278595 [Abstract] [Full Text] [Related]
8. Fabrication of graphene oxide/Ag hybrids and their surface-enhanced Raman scattering characteristics. Qian Z, Cheng Y, Zhou X, Wu J, Xu G. J Colloid Interface Sci; 2013 May 01; 397():103-7. PubMed ID: 23425548 [Abstract] [Full Text] [Related]
9. Surface enhanced Raman scattering by graphene-nanosheet-gapped plasmonic nanoparticle arrays for multiplexed DNA detection. Duan B, Zhou J, Fang Z, Wang C, Wang X, Hemond HF, Chan-Park MB, Duan H. Nanoscale; 2015 Aug 07; 7(29):12606-13. PubMed ID: 26147399 [Abstract] [Full Text] [Related]
10. A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids. Ren W, Fang Y, Wang E. ACS Nano; 2011 Aug 23; 5(8):6425-33. PubMed ID: 21721545 [Abstract] [Full Text] [Related]
11. A SERS-active sensor based on heterogeneous gold nanostar core-silver nanoparticle satellite assemblies for ultrasensitive detection of aflatoxinB1. Li A, Tang L, Song D, Song S, Ma W, Xu L, Kuang H, Wu X, Liu L, Chen X, Xu C. Nanoscale; 2016 Jan 28; 8(4):1873-8. PubMed ID: 26732202 [Abstract] [Full Text] [Related]
12. A novel surface-enhanced Raman scattering sensor to detect prohibited colorants in food by graphene/silver nanocomposite. Xie Y, Li Y, Niu L, Wang H, Qian H, Yao W. Talanta; 2012 Oct 15; 100():32-7. PubMed ID: 23141308 [Abstract] [Full Text] [Related]
13. Surface-enhanced Raman scattering-active gold nanoparticles modified with a monolayer of silver film. Chang CC, Yang KH, Liu YC, Yu CC, Wu YH. Analyst; 2012 Nov 07; 137(21):4943-50. PubMed ID: 22970430 [Abstract] [Full Text] [Related]
14. Highly sensitive immunoassay based on SERS using nano-Au immune probes and a nano-Ag immune substrate. Shu L, Zhou J, Yuan X, Petti L, Chen J, Jia Z, Mormile P. Talanta; 2014 Jun 07; 123():161-8. PubMed ID: 24725879 [Abstract] [Full Text] [Related]
15. Cylindrical posts of Ag/SiO₂/Au multi-segment layer patterns for highly efficient surface enhanced Raman scattering. Kim KH, Baek YK, Jeon HJ, Srinivasarao M, Jung HT. Nanotechnology; 2012 Aug 10; 23(31):315302. PubMed ID: 22802161 [Abstract] [Full Text] [Related]
16. Double Detection of Mycotoxins Based on SERS Labels Embedded Ag@Au Core-Shell Nanoparticles. Zhao Y, Yang Y, Luo Y, Yang X, Li M, Song Q. ACS Appl Mater Interfaces; 2015 Oct 07; 7(39):21780-6. PubMed ID: 26381109 [Abstract] [Full Text] [Related]
17. Graphene nanosheets-supported Ag nanoparticles for ultrasensitive detection of TNT by surface-enhanced Raman spectroscopy. Liu M, Chen W. Biosens Bioelectron; 2013 Aug 15; 46():68-73. PubMed ID: 23500479 [Abstract] [Full Text] [Related]
18. Magnetic immunoassay for cancer biomarker detection based on surface-enhanced resonance Raman scattering from coupled plasmonic nanostructures. Rong Z, Wang C, Wang J, Wang D, Xiao R, Wang S. Biosens Bioelectron; 2016 Oct 15; 84():15-21. PubMed ID: 27149164 [Abstract] [Full Text] [Related]
19. Graphene oxide embedded sandwich nanostructures for enhanced Raman readout and their applications in pesticide monitoring. Zhang L, Jiang C, Zhang Z. Nanoscale; 2013 May 07; 5(9):3773-9. PubMed ID: 23535912 [Abstract] [Full Text] [Related]
20. Particle size dependence of the surface-enhanced Raman scattering properties of densely arranged two-dimensional assemblies of Au(core)-Ag(shell) nanospheres. Sugawa K, Akiyama T, Tanoue Y, Harumoto T, Yanagida S, Yasumori A, Tomita S, Otsuki J. Phys Chem Chem Phys; 2015 Sep 07; 17(33):21182-9. PubMed ID: 25558009 [Abstract] [Full Text] [Related] Page: [Next] [New Search]