These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


213 related items for PubMed ID: 2543446

  • 1. Evidence that the 3' end of a tRNA binds to a site in the adenylate synthesis domain of an aminoacyl-tRNA synthetase.
    Hill K, Schimmel P.
    Biochemistry; 1989 Mar 21; 28(6):2577-86. PubMed ID: 2543446
    [Abstract] [Full Text] [Related]

  • 2. Allosteric interaction of nucleotides and tRNA(ala) with E. coli alanyl-tRNA synthetase.
    Dignam JD, Guo J, Griffith WP, Garbett NC, Holloway A, Mueser T.
    Biochemistry; 2011 Nov 15; 50(45):9886-900. PubMed ID: 21985608
    [Abstract] [Full Text] [Related]

  • 3. Polypeptide sequences essential for RNA recognition by an enzyme.
    Regan L, Bowie J, Schimmel P.
    Science; 1987 Mar 27; 235(4796):1651-3. PubMed ID: 2435005
    [Abstract] [Full Text] [Related]

  • 4. Region of a conserved sequence motif in a class II tRNA synthetase needed for transfer of an activated amino acid to an RNA substrate.
    Shi JP, Musier-Forsyth K, Schimmel P.
    Biochemistry; 1994 May 03; 33(17):5312-8. PubMed ID: 8172905
    [Abstract] [Full Text] [Related]

  • 5. The reliability of in vivo structure-function analysis of tRNA aminoacylation.
    McClain WH, Jou YY, Bhattacharya S, Gabriel K, Schneider J.
    J Mol Biol; 1999 Jul 09; 290(2):391-409. PubMed ID: 10390340
    [Abstract] [Full Text] [Related]

  • 6. Escherichia coli glutaminyl-tRNA synthetase: a single amino acid replacement relaxes rRNA specificity.
    Uemura H, Conley J, Yamao F, Rogers J, Söll D.
    Protein Seq Data Anal; 1988 Jul 09; 1(6):479-85. PubMed ID: 2464170
    [Abstract] [Full Text] [Related]

  • 7. Affinity labeling of aminoacyl-tRNA synthetases with adenosine triphosphopyridoxal: probing the Lys-Met-Ser-Lys-Ser signature sequence as the ATP-binding site in Escherichia coli methionyl-and valyl-tRNA synthetases.
    Hountondji C, Schmitter JM, Fukui T, Tagaya M, Blanquet S.
    Biochemistry; 1990 Dec 25; 29(51):11266-73. PubMed ID: 2271710
    [Abstract] [Full Text] [Related]

  • 8. Domain-domain communication for tRNA aminoacylation: the importance of covalent connectivity.
    Zhang CM, Hou YM.
    Biochemistry; 2005 May 17; 44(19):7240-9. PubMed ID: 15882062
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. tRNAPhe deprived of 3'-terminal adenosyl residue does not stimulate adenosine aminoacylation catalyzed by phenylalanyl-tRNA synthetase from Escherichia coli.
    Boutorin AS, Gordienko VA, Lavrik OI, Moor NA.
    FEBS Lett; 1988 Sep 26; 238(1):211-3. PubMed ID: 3049157
    [Abstract] [Full Text] [Related]

  • 11. Distinct domains of tRNA synthetase recognize the same base pair.
    Beebe K, Mock M, Merriman E, Schimmel P.
    Nature; 2008 Jan 03; 451(7174):90-3. PubMed ID: 18172502
    [Abstract] [Full Text] [Related]

  • 12. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution.
    Rould MA, Perona JJ, Söll D, Steitz TA.
    Science; 1989 Dec 01; 246(4934):1135-42. PubMed ID: 2479982
    [Abstract] [Full Text] [Related]

  • 13. Mutant aminoacyl-tRNA synthetase that compensates for a mutation in the major identity determinant of its tRNA.
    Miller WT, Hou YM, Schimmel P.
    Biochemistry; 1991 Mar 12; 30(10):2635-41. PubMed ID: 2001352
    [Abstract] [Full Text] [Related]

  • 14. Isoleucyl-tRNA synthetase from Escherichia coli MRE 600. Different pathways of the aminoacylation reaction depending on presence of pyrophosphatase, order of substrate addition in the pyrophosphate exchange, and substrate specificity with regard to ATP analogs.
    Freist W, Sternbach H, Cramer F.
    Eur J Biochem; 1982 Nov 15; 128(2-3):315-29. PubMed ID: 6129973
    [Abstract] [Full Text] [Related]

  • 15. Evidence for class-specific discrimination of a semiconserved base pair by tRNA synthetases.
    Liu H, Kessler J, Peterson R, Musier-Forsyth K.
    Biochemistry; 1995 Aug 01; 34(30):9795-800. PubMed ID: 7542924
    [Abstract] [Full Text] [Related]

  • 16. Evidence for unfolding of the single-stranded GCCA 3'-End of a tRNA on its aminoacyl-tRNA synthetase from a stacked helical to a foldback conformation.
    Madore E, Lipman RS, Hou YM, Lapointe J.
    Biochemistry; 2000 Jun 13; 39(23):6791-8. PubMed ID: 10841758
    [Abstract] [Full Text] [Related]

  • 17. Accuracy of in vivo aminoacylation requires proper balance of tRNA and aminoacyl-tRNA synthetase.
    Swanson R, Hoben P, Sumner-Smith M, Uemura H, Watson L, Söll D.
    Science; 1988 Dec 16; 242(4885):1548-51. PubMed ID: 3144042
    [Abstract] [Full Text] [Related]

  • 18. Glutamyl transfer ribonucleic acid synthetase of Escherichia coli. Study of the interactions with its substrates.
    Kern D, Lapointe J.
    Biochemistry; 1979 Dec 25; 18(26):5809-18. PubMed ID: 229901
    [Abstract] [Full Text] [Related]

  • 19. Evidence for interaction of an aminoacyl transfer RNA synthetase with a region important for the identity of its cognate transfer RNA.
    Park SJ, Schimmel P.
    J Biol Chem; 1988 Nov 15; 263(32):16527-30. PubMed ID: 3053691
    [Abstract] [Full Text] [Related]

  • 20. C-terminal zinc-containing peptide required for RNA recognition by a class I tRNA synthetase.
    Glasfeld E, Landro JA, Schimmel P.
    Biochemistry; 1996 Apr 02; 35(13):4139-45. PubMed ID: 8672449
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.