These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


490 related items for PubMed ID: 25434760

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. Estimation of benchmark dose for renal dysfunction in a cadmium non-polluted area in Japan.
    Kobayashi E, Suwazono Y, Uetani M, Inaba T, Oishi M, Kido T, Nishijo M, Nakagawa H, Nogawa K.
    J Appl Toxicol; 2006; 26(4):351-5. PubMed ID: 16791912
    [Abstract] [Full Text] [Related]

  • 23. Co-exposure to lead increases the renal response to low levels of cadmium in metallurgy workers.
    Hambach R, Lison D, D'Haese PC, Weyler J, De Graef E, De Schryver A, Lamberts LV, van Sprundel M.
    Toxicol Lett; 2013 Oct 24; 222(2):233-8. PubMed ID: 23806787
    [Abstract] [Full Text] [Related]

  • 24. Application of the Benchmark Dose (BMD) Method to Identify Thresholds of Cadmium-Induced Renal Effects in Non-Polluted Areas in China.
    Wang X, Wang Y, Feng L, Tong Y, Chen Z, Ying S, Chen T, Li T, Xia H, Jiang Z, Shang Q, Lou X, Lou J.
    PLoS One; 2016 Oct 24; 11(8):e0161240. PubMed ID: 27537182
    [Abstract] [Full Text] [Related]

  • 25. Biomarkers of cadmium and arsenic interactions.
    Nordberg GF, Jin T, Hong F, Zhang A, Buchet JP, Bernard A.
    Toxicol Appl Pharmacol; 2005 Aug 07; 206(2):191-7. PubMed ID: 15967208
    [Abstract] [Full Text] [Related]

  • 26. Renal effects of cadmium exposure in cadmium nonpolluted areas in Japan.
    Suwazono Y, Kobayashi E, Okubo Y, Nogawa K, Kido T, Nakagawa H.
    Environ Res; 2000 Sep 07; 84(1):44-55. PubMed ID: 10991781
    [Abstract] [Full Text] [Related]

  • 27. Benchmark dose for cadmium exposure and elevated N-acetyl-β-D-glucosaminidase: a meta-analysis.
    Liu C, Li Y, Zhu C, Dong Z, Zhang K, Zhao Y, Xu Y.
    Environ Sci Pollut Res Int; 2016 Oct 07; 23(20):20528-20538. PubMed ID: 27464656
    [Abstract] [Full Text] [Related]

  • 28. Estimation of benchmark dose for pancreatic damage in cadmium-exposed smelters.
    Lei LJ, Chen L, Jin TY, Nordberg M, Chang XL.
    Toxicol Sci; 2007 May 07; 97(1):189-95. PubMed ID: 17303580
    [Abstract] [Full Text] [Related]

  • 29. The reference dose for subchronic exposure of pigs to cadmium leading to early renal damage by benchmark dose method.
    Wu X, Wei S, Wei Y, Guo B, Yang M, Zhao D, Liu X, Cai X.
    Toxicol Sci; 2012 Aug 07; 128(2):524-31. PubMed ID: 22610606
    [Abstract] [Full Text] [Related]

  • 30. A 28-year observational study of urinary cadmium and β2 -microglobulin concentrations in inhabitants in cadmium-polluted areas in Japan.
    Duc Phuc H, Kido T, Dung Manh H, Thai Anh L, Phuong Oanh NT, Okamoto R, Ichimori A, Nogawa K, Suwazono Y, Nakagawa H.
    J Appl Toxicol; 2016 Dec 07; 36(12):1622-1628. PubMed ID: 27080698
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32. Cadmium burden and its renal effect in inhabitants in a cadmium-contaminated area.
    Kawada T.
    Environ Toxicol Pharmacol; 2015 May 07; 39(3):1276-7. PubMed ID: 25978868
    [No Abstract] [Full Text] [Related]

  • 33. Differences in the susceptibility to cadmium-induced renal tubular damage and osteoporosis according to sex.
    Kim YD, Yim DH, Eom SY, Moon SI, Park CH, Kim GB, Yu SD, Choi BS, Park JD, Kim H.
    Environ Toxicol Pharmacol; 2014 Jul 07; 38(1):272-8. PubMed ID: 24975448
    [Abstract] [Full Text] [Related]

  • 34. A cross-sectional study on school-age children living near a municipal waste incinerator: Urinary metal levels and renal impairment assessment.
    Xu P, Wu L, Chen Y, Xu D, Wang X, Fu Q, Chen Z, Lou X, Lou J.
    Chemosphere; 2020 Feb 07; 241():125081. PubMed ID: 31622890
    [Abstract] [Full Text] [Related]

  • 35. Prognostic values of serum cystatin C and beta2 microglobulin, urinary beta2 microglobulin and N-acetyl-beta-D-glucosaminidase in early acute renal failure after liver transplantation.
    Hei ZQ, Li XY, Shen N, Pang HY, Zhou SL, Guan JQ.
    Chin Med J (Engl); 2008 Jul 20; 121(14):1251-6. PubMed ID: 18713542
    [Abstract] [Full Text] [Related]

  • 36. Urinary beta 2-microglobulin levels and urinary N-acetyl-beta-D-glucosaminidase enzyme activities in early diagnosis of non-insulin-dependent diabetes mellitus nephropathy.
    Mocan Z, Erem C, Yildirim M, Telatar M, Değer O.
    Diabetes Res; 1994 Jul 20; 26(3):101-7. PubMed ID: 7621616
    [Abstract] [Full Text] [Related]

  • 37. Urinary cadmium and N-acetyl-beta-D-glucosaminidase excretion of inhabitants living in a cadmium-polluted area.
    Kawada T, Shinmyo RR, Suzuki S.
    Int Arch Occup Environ Health; 1992 Jul 20; 63(8):541-6. PubMed ID: 1587629
    [Abstract] [Full Text] [Related]

  • 38. Significance of the excretion of urinary indicator proteins for a low level of occupational exposure to cadmium.
    Kawada T, Tohyama C, Suzuki S.
    Int Arch Occup Environ Health; 1990 Jul 20; 62(1):95-100. PubMed ID: 2403983
    [Abstract] [Full Text] [Related]

  • 39. Environmental epidemiological study and estimation of benchmark dose for renal dysfunction in a cadmium-polluted area in China.
    Jin T, Wu X, Tang Y, Nordberg M, Bernard A, Ye T, Kong Q, Lundström NG, Nordberg GF.
    Biometals; 2004 Oct 20; 17(5):525-30. PubMed ID: 15688857
    [Abstract] [Full Text] [Related]

  • 40. Urinary beta 2-microglobulin and N-acetyl-beta-D-glucosaminidase (NAG) as early markers of renal tubular dysfunction in sick neonates.
    Chen JY, Lee YL, Liu CB.
    J Formos Med Assoc; 1991 Feb 20; 90(2):132-7. PubMed ID: 1678405
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 25.