These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


368 related items for PubMed ID: 25437227

  • 21. Enhanced transport of Si-coated nanoscale zero-valent iron particles in porous media.
    HonetschlÄgerová L, Janouškovcová P, Kubal M.
    Environ Technol; 2016; 37(12):1530-8. PubMed ID: 26582314
    [Abstract] [Full Text] [Related]

  • 22. Interaction between Cu2+ and different types of surface-modified nanoscale zero-valent iron during their transport in porous media.
    Dong H, Zeng G, Zhang C, Liang J, Ahmad K, Xu P, He X, Lai M.
    J Environ Sci (China); 2015 Jun 01; 32():180-8. PubMed ID: 26040744
    [Abstract] [Full Text] [Related]

  • 23. Magnetic resonance imaging reveals detailed spatial and temporal distribution of iron-based nanoparticles transported through water-saturated porous media.
    Cuny L, Herrling MP, Guthausen G, Horn H, Delay M.
    J Contam Hydrol; 2015 Nov 01; 182():51-62. PubMed ID: 26335945
    [Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Mobility enhancement of nanoscale zero-valent iron in carbonate porous media through co-injection of polyelectrolytes.
    Laumann S, Micić V, Hofmann T.
    Water Res; 2014 Mar 01; 50():70-9. PubMed ID: 24361704
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Transport characteristics of nanoscale zero-valent iron carried by three different "vehicles" in porous media.
    Su Y, Zhao YS, Li LL, Qin CY, Wu F, Geng NN, Lei JS.
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014 Mar 01; 49(14):1639-52. PubMed ID: 25320851
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Effects of grain size and structural heterogeneity on the transport and retention of nano-TiO2 in saturated porous media.
    Lv X, Gao B, Sun Y, Dong S, Wu J, Jiang B, Shi X.
    Sci Total Environ; 2016 Sep 01; 563-564():987-95. PubMed ID: 26774131
    [Abstract] [Full Text] [Related]

  • 30. Development of a trajectory model for predicting attachment of submicrometer particles in porous media: stabilized NZVI as a case study.
    Wei YT, Wu SC.
    Environ Sci Technol; 2010 Dec 01; 44(23):8996-9002. PubMed ID: 21067208
    [Abstract] [Full Text] [Related]

  • 31.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Modification, characterization and investigations of key factors controlling the transport of modified nano zero-valent iron (nZVI) in porous media.
    Saha AK, Sinha A, Pasupuleti S.
    Environ Technol; 2019 May 01; 40(12):1543-1556. PubMed ID: 29319455
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Concentration dependent transport of colloids in saturated porous media.
    Bradford SA, Bettahar M.
    J Contam Hydrol; 2006 Jan 05; 82(1-2):99-117. PubMed ID: 16290313
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 19.