These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


368 related items for PubMed ID: 25437227

  • 41. Transport of carboxymethyl cellulose stabilized iron nanoparticles in porous media: column experiments and modeling.
    He F, Zhang M, Qian T, Zhao D.
    J Colloid Interface Sci; 2009 Jun 01; 334(1):96-102. PubMed ID: 19383562
    [Abstract] [Full Text] [Related]

  • 42. Stability and aggregation of metal oxide nanoparticles in natural aqueous matrices.
    Keller AA, Wang H, Zhou D, Lenihan HS, Cherr G, Cardinale BJ, Miller R, Ji Z.
    Environ Sci Technol; 2010 Mar 15; 44(6):1962-7. PubMed ID: 20151631
    [Abstract] [Full Text] [Related]

  • 43. Enhanced transportability of zero valent iron nanoparticles in aquifer sediments: surface modifications, reactivity, and particle traveling distances.
    Kumar N, Labille J, Bossa N, Auffan M, Doumenq P, Rose J, Bottero JY.
    Environ Sci Pollut Res Int; 2017 Apr 15; 24(10):9269-9277. PubMed ID: 28224341
    [Abstract] [Full Text] [Related]

  • 44.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 45.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 46.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 47.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 48.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 49.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 50. A 3-dimensional micro- and nanoparticle transport and filtration model (MNM3D) applied to the migration of carbon-based nanomaterials in porous media.
    Bianco C, Tosco T, Sethi R.
    J Contam Hydrol; 2016 Oct 15; 193():10-20. PubMed ID: 27607520
    [Abstract] [Full Text] [Related]

  • 51. Transport of metal oxide nanoparticles in saturated porous media.
    Ben-Moshe T, Dror I, Berkowitz B.
    Chemosphere; 2010 Sep 15; 81(3):387-93. PubMed ID: 20678789
    [Abstract] [Full Text] [Related]

  • 52.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 53.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 54.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 55.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 56.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 57. Transport of carboxymethyl cellulose-coated zerovalent iron nanoparticles in a sand tank: Effects of sand grain size, nanoparticle concentration and injection velocity.
    Li J, Rajajayavel SRC, Ghoshal S.
    Chemosphere; 2016 May 15; 150():8-16. PubMed ID: 26891351
    [Abstract] [Full Text] [Related]

  • 58. A MD simulation and analysis for aggregation behaviors of nanoscale zero-valent iron particles in water via MS.
    Zhao Y, Liu D, Tang H, Lu J, Cui F.
    ScientificWorldJournal; 2014 May 15; 2014():768780. PubMed ID: 25250388
    [Abstract] [Full Text] [Related]

  • 59. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media.
    Kanti Sen T, Khilar KC.
    Adv Colloid Interface Sci; 2006 Feb 28; 119(2-3):71-96. PubMed ID: 16324681
    [Abstract] [Full Text] [Related]

  • 60. Computational fluid dynamics simulation of transport and retention of nanoparticle in saturated sand filters.
    Hassan AA, Li Z, Sahle-Demessie E, Sorial GA.
    J Hazard Mater; 2013 Jan 15; 244-245():251-8. PubMed ID: 23270949
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 19.