These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
344 related items for PubMed ID: 25438040
1. Hyaluronic acid enhances the mechanical properties of tissue-engineered cartilage constructs. Levett PA, Hutmacher DW, Malda J, Klein TJ. PLoS One; 2014; 9(12):e113216. PubMed ID: 25438040 [Abstract] [Full Text] [Related]
2. A biomimetic extracellular matrix for cartilage tissue engineering centered on photocurable gelatin, hyaluronic acid and chondroitin sulfate. Levett PA, Melchels FP, Schrobback K, Hutmacher DW, Malda J, Klein TJ. Acta Biomater; 2014 Jan; 10(1):214-23. PubMed ID: 24140603 [Abstract] [Full Text] [Related]
3. Photocrosslinkable hyaluronan as a scaffold for articular cartilage repair. Nettles DL, Vail TP, Morgan MT, Grinstaff MW, Setton LA. Ann Biomed Eng; 2004 Mar; 32(3):391-7. PubMed ID: 15095813 [Abstract] [Full Text] [Related]
4. Development of a thermosensitive HAMA-containing bio-ink for the fabrication of composite cartilage repair constructs. Mouser VH, Abbadessa A, Levato R, Hennink WE, Vermonden T, Gawlitta D, Malda J. Biofabrication; 2017 Mar 23; 9(1):015026. PubMed ID: 28229956 [Abstract] [Full Text] [Related]
5. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs. Schuurman W, Levett PA, Pot MW, van Weeren PR, Dhert WJ, Hutmacher DW, Melchels FP, Klein TJ, Malda J. Macromol Biosci; 2013 May 23; 13(5):551-61. PubMed ID: 23420700 [Abstract] [Full Text] [Related]
6. Near-Infrared Spectroscopy Predicts Compositional and Mechanical Properties of Hyaluronic Acid-Based Engineered Cartilage Constructs. Yousefi F, Kim M, Nahri SY, Mauck RL, Pleshko N. Tissue Eng Part A; 2018 Jan 23; 24(1-2):106-116. PubMed ID: 28398127 [Abstract] [Full Text] [Related]
7. Chondrocyte redifferentiation and construct mechanical property development in single-component photocrosslinkable hydrogels. Levett PA, Melchels FP, Schrobback K, Hutmacher DW, Malda J, Klein TJ. J Biomed Mater Res A; 2014 Aug 23; 102(8):2544-53. PubMed ID: 24000167 [Abstract] [Full Text] [Related]
8. Functional properties of bone marrow-derived MSC-based engineered cartilage are unstable with very long-term in vitro culture. Farrell MJ, Fisher MB, Huang AH, Shin JI, Farrell KM, Mauck RL. J Biomech; 2014 Jun 27; 47(9):2173-82. PubMed ID: 24239005 [Abstract] [Full Text] [Related]
9. Mechanical stimulation by ultrasound enhances chondrogenic differentiation of mesenchymal stem cells in a fibrin-hyaluronic acid hydrogel. Choi JW, Choi BH, Park SH, Pai KS, Li TZ, Min BH, Park SR. Artif Organs; 2013 Jul 27; 37(7):648-55. PubMed ID: 23495957 [Abstract] [Full Text] [Related]
10. Dual Function of Glucosamine in Gelatin/Hyaluronic Acid Cryogel to Modulate Scaffold Mechanical Properties and to Maintain Chondrogenic Phenotype for Cartilage Tissue Engineering. Chen CH, Kuo CY, Wang YJ, Chen JP. Int J Mol Sci; 2016 Nov 23; 17(11):. PubMed ID: 27886065 [Abstract] [Full Text] [Related]
11. Effects of auricular chondrocyte expansion on neocartilage formation in photocrosslinked hyaluronic acid networks. Chung C, Mesa J, Miller GJ, Randolph MA, Gill TJ, Burdick JA. Tissue Eng; 2006 Sep 23; 12(9):2665-73. PubMed ID: 16995800 [Abstract] [Full Text] [Related]
12. Structural and biological investigation of chitosan/hyaluronic acid with silanized-hydroxypropyl methylcellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. Hu M, Yang J, Xu J. Drug Deliv; 2021 Dec 23; 28(1):607-619. PubMed ID: 33739203 [Abstract] [Full Text] [Related]
13. Semi-interpenetrating networks of hyaluronic acid in degradable PEG hydrogels for cartilage tissue engineering. Skaalure SC, Dimson SO, Pennington AM, Bryant SJ. Acta Biomater; 2014 Aug 23; 10(8):3409-20. PubMed ID: 24769116 [Abstract] [Full Text] [Related]
14. High mesenchymal stem cell seeding densities in hyaluronic acid hydrogels produce engineered cartilage with native tissue properties. Erickson IE, Kestle SR, Zellars KH, Farrell MJ, Kim M, Burdick JA, Mauck RL. Acta Biomater; 2012 Aug 23; 8(8):3027-34. PubMed ID: 22546516 [Abstract] [Full Text] [Related]
15. Biomimetic scaffolds and dynamic compression enhance the properties of chondrocyte- and MSC-based tissue-engineered cartilage. Sawatjui N, Limpaiboon T, Schrobback K, Klein T. J Tissue Eng Regen Med; 2018 May 23; 12(5):1220-1229. PubMed ID: 29489056 [Abstract] [Full Text] [Related]
16. Anatomic Mesenchymal Stem Cell-Based Engineered Cartilage Constructs for Biologic Total Joint Replacement. Saxena V, Kim M, Keah NM, Neuwirth AL, Stoeckl BD, Bickard K, Restle DJ, Salowe R, Wang MY, Steinberg DR, Mauck RL. Tissue Eng Part A; 2016 Feb 23; 22(3-4):386-95. PubMed ID: 26871863 [Abstract] [Full Text] [Related]
17. Dynamic compressive loading enhances cartilage matrix synthesis and distribution and suppresses hypertrophy in hMSC-laden hyaluronic acid hydrogels. Bian L, Zhai DY, Zhang EC, Mauck RL, Burdick JA. Tissue Eng Part A; 2012 Apr 23; 18(7-8):715-24. PubMed ID: 21988555 [Abstract] [Full Text] [Related]
18. Elastin-like protein-hyaluronic acid (ELP-HA) hydrogels with decoupled mechanical and biochemical cues for cartilage regeneration. Zhu D, Wang H, Trinh P, Heilshorn SC, Yang F. Biomaterials; 2017 May 23; 127():132-140. PubMed ID: 28268018 [Abstract] [Full Text] [Related]
19. Hyaluronic acid facilitates chondrogenesis and matrix deposition of human adipose derived mesenchymal stem cells and human chondrocytes co-cultures. Amann E, Wolff P, Breel E, van Griensven M, Balmayor ER. Acta Biomater; 2017 Apr 01; 52():130-144. PubMed ID: 28131943 [Abstract] [Full Text] [Related]