These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
327 related items for PubMed ID: 25439509
1. Direct and octave-shifted pitch matching during nonword imitations in men, women, and children. Peter B, Foster B, Haas H, Middleton K, McKibben K. J Voice; 2015 Mar; 29(2):260.e21-30. PubMed ID: 25439509 [Abstract] [Full Text] [Related]
6. Acoustic Analyses of Tone Productions in Sequencing Contexts Among Cantonese-Speaking Preschool Children With and Without Childhood Apraxia of Speech. Wong ECH, Wong MN, Velleman SL. J Speech Lang Hear Res; 2024 Jun 06; 67(6):1682-1711. PubMed ID: 38662942 [Abstract] [Full Text] [Related]
7. Effects of frequency-shifted feedback on the pitch of vocal productions. ELman JL. J Acoust Soc Am; 1981 Jul 06; 70(1):45-50. PubMed ID: 7264071 [Abstract] [Full Text] [Related]
9. Interactions between auditory and somatosensory feedback for voice F0 control. Larson CR, Altman KW, Liu H, Hain TC. Exp Brain Res; 2008 Jun 06; 187(4):613-21. PubMed ID: 18340440 [Abstract] [Full Text] [Related]
10. Sensorimotor control of vocal pitch production in Parkinson's disease. Chen X, Zhu X, Wang EQ, Chen L, Li W, Chen Z, Liu H. Brain Res; 2013 Aug 21; 1527():99-107. PubMed ID: 23820424 [Abstract] [Full Text] [Related]
11. Control of voice fundamental frequency in speaking versus singing. Natke U, Donath TM, Kalveram KT. J Acoust Soc Am; 2003 Mar 21; 113(3):1587-93. PubMed ID: 12656393 [Abstract] [Full Text] [Related]
12. Comparison of voice F0 responses to pitch-shift onset and offset conditions. Larson CR, Burnett TA, Bauer JJ, Kiran S, Hain TC. J Acoust Soc Am; 2001 Dec 21; 110(6):2845-8. PubMed ID: 11785786 [Abstract] [Full Text] [Related]
13. Effects of vocal training on the acoustic parameters of the singing voice. Mendes AP, Rothman HB, Sapienza C, Brown WS. J Voice; 2003 Dec 21; 17(4):529-43. PubMed ID: 14740934 [Abstract] [Full Text] [Related]
14. A systematic review of the voice-tagging hypothesis of speech-in-noise perception. Rosenthal MA. Neuropsychologia; 2020 Jan 21; 136():107256. PubMed ID: 31715197 [Abstract] [Full Text] [Related]
15. Convergence in voice fundamental frequency during synchronous speech. Bradshaw AR, McGettigan C. PLoS One; 2021 Jan 21; 16(10):e0258747. PubMed ID: 34673811 [Abstract] [Full Text] [Related]
16. Sex-related differences in vocal responses to pitch feedback perturbations during sustained vocalization. Chen Z, Liu P, Jones JA, Huang D, Liu H. J Acoust Soc Am; 2010 Dec 21; 128(6):EL355-60. PubMed ID: 21218857 [Abstract] [Full Text] [Related]
17. A comparison between common marmosets (Callithrix jacchus) and human infants sheds light on traits proposed to be at the root of human octave equivalence. Wagner B, Šlipogor V, Oh J, Varga M, Hoeschele M. Dev Sci; 2023 Sep 21; 26(5):e13395. PubMed ID: 37101383 [Abstract] [Full Text] [Related]
18. Perception and imitation of period-doubled phonation: Pitch and voice qualitya). Huang Y. J Acoust Soc Am; 2024 Aug 01; 156(2):1391-1412. PubMed ID: 39196103 [Abstract] [Full Text] [Related]
19. Individuals with autism spectrum disorder are impaired in absolute but not relative pitch and duration matching in speech and song imitation. Wang L, Pfordresher PQ, Jiang C, Liu F. Autism Res; 2021 Nov 01; 14(11):2355-2372. PubMed ID: 34214243 [Abstract] [Full Text] [Related]
20. Vocal fundamental and formant frequencies affect perceptions of speaker cooperativeness. Knowles KK, Little AC. Q J Exp Psychol (Hove); 2016 Nov 01; 69(9):1657-75. PubMed ID: 26360784 [Abstract] [Full Text] [Related] Page: [Next] [New Search]