These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


206 related items for PubMed ID: 2545706

  • 1. Spin-trapping and human neutrophils. Limits of detection of hydroxyl radical.
    Pou S, Cohen MS, Britigan BE, Rosen GM.
    J Biol Chem; 1989 Jul 25; 264(21):12299-302. PubMed ID: 2545706
    [Abstract] [Full Text] [Related]

  • 2. Stimulated human neutrophils limit iron-catalyzed hydroxyl radical formation as detected by spin-trapping techniques.
    Britigan BE, Rosen GM, Thompson BY, Chai Y, Cohen MS.
    J Biol Chem; 1986 Dec 25; 261(36):17026-32. PubMed ID: 3023380
    [Abstract] [Full Text] [Related]

  • 3. Do human neutrophils make hydroxyl radical? Determination of free radicals generated by human neutrophils activated with a soluble or particulate stimulus using electron paramagnetic resonance spectrometry.
    Britigan BE, Rosen GM, Chai Y, Cohen MS.
    J Biol Chem; 1986 Apr 05; 261(10):4426-31. PubMed ID: 3007455
    [Abstract] [Full Text] [Related]

  • 4. Hydroxyl radical production by stimulated neutrophils reappraised.
    Samuni A, Black CD, Krishna CM, Malech HL, Bernstein EF, Russo A.
    J Biol Chem; 1988 Sep 25; 263(27):13797-801. PubMed ID: 2843536
    [Abstract] [Full Text] [Related]

  • 5. Detection of phagocyte-derived free radicals with spin trapping techniques: effect of temperature and cellular metabolism.
    Rosen GM, Britigan BE, Cohen MS, Ellington SP, Barber MJ.
    Biochim Biophys Acta; 1988 May 13; 969(3):236-41. PubMed ID: 2835986
    [Abstract] [Full Text] [Related]

  • 6. Spin trapping evidence for the lack of significant hydroxyl radical production during the respiration burst of human phagocytes using a spin adduct resistant to superoxide-mediated destruction.
    Britigan BE, Coffman TJ, Buettner GR.
    J Biol Chem; 1990 Feb 15; 265(5):2650-6. PubMed ID: 2154454
    [Abstract] [Full Text] [Related]

  • 7. Superoxide dismutase-like activities of copper(II) complexes tested in serum.
    Huber KR, Sridhar R, Griffith EH, Amma EL, Roberts J.
    Biochim Biophys Acta; 1987 Sep 24; 915(2):267-76. PubMed ID: 2820500
    [Abstract] [Full Text] [Related]

  • 8. Spin traps inhibit formation of hydrogen peroxide via the dismutation of superoxide: implications for spin trapping the hydroxyl free radical.
    Britigan BE, Roeder TL, Buettner GR.
    Biochim Biophys Acta; 1991 Oct 31; 1075(3):213-22. PubMed ID: 1659450
    [Abstract] [Full Text] [Related]

  • 9. Spin trapping evidence for myeloperoxidase-dependent hydroxyl radical formation by human neutrophils and monocytes.
    Ramos CL, Pou S, Britigan BE, Cohen MS, Rosen GM.
    J Biol Chem; 1992 Apr 25; 267(12):8307-12. PubMed ID: 1314821
    [Abstract] [Full Text] [Related]

  • 10. Mechanisms of generation of oxygen radicals and reductive mobilization of ferritin iron by lipoamide dehydrogenase.
    Bando Y, Aki K.
    J Biochem; 1991 Mar 25; 109(3):450-4. PubMed ID: 1652585
    [Abstract] [Full Text] [Related]

  • 11. Production of hydroxyl radical by decomposition of superoxide spin-trapped adducts.
    Finkelstein E, Rosen GM, Rauckman EJ.
    Mol Pharmacol; 1982 Mar 25; 21(2):262-5. PubMed ID: 6285165
    [Abstract] [Full Text] [Related]

  • 12. Evidence against transition metal-independent hydroxyl radical generation by xanthine oxidase.
    Lloyd RV, Mason RP.
    J Biol Chem; 1990 Oct 05; 265(28):16733-6. PubMed ID: 2170352
    [Abstract] [Full Text] [Related]

  • 13. Evidence for intracellular superoxide formation following the exposure of guinea pig enterocytes to bleomycin.
    Turner MJ, Bozarth CH, Strauss KE.
    Biochem Pharmacol; 1989 Jan 01; 38(1):85-90. PubMed ID: 2462883
    [Abstract] [Full Text] [Related]

  • 14. Reevaluation of the spin-trapped adduct formed from 5,5-dimethyl-1-pyrroline-1-oxide during the respiratory burst in neutrophils.
    Ueno I, Kohno M, Mitsuta K, Mizuta Y, Kanegasaki S.
    J Biochem; 1989 Jun 01; 105(6):905-10. PubMed ID: 2549020
    [Abstract] [Full Text] [Related]

  • 15. Characterization of free radical generation by xanthine oxidase. Evidence for hydroxyl radical generation.
    Kuppusamy P, Zweier JL.
    J Biol Chem; 1989 Jun 15; 264(17):9880-4. PubMed ID: 2542334
    [Abstract] [Full Text] [Related]

  • 16. Neutrophil degranulation inhibits potential hydroxyl-radical formation. Relative impact of myeloperoxidase and lactoferrin release on hydroxyl-radical production by iron-supplemented neutrophils assessed by spin-trapping techniques.
    Britigan BE, Hassett DJ, Rosen GM, Hamill DR, Cohen MS.
    Biochem J; 1989 Dec 01; 264(2):447-55. PubMed ID: 2557840
    [Abstract] [Full Text] [Related]

  • 17. The interaction of 5,5-dimethyl-1-pyrroline-N-oxide with human myeloperoxidase and its potential impact on spin trapping of neutrophil-derived free radicals.
    Britigan BE, Hamill DR.
    Arch Biochem Biophys; 1989 Nov 15; 275(1):72-81. PubMed ID: 2554813
    [Abstract] [Full Text] [Related]

  • 18. A kinetic approach to the selection of a sensitive spin trapping system for the detection of hydroxyl radical.
    Pou S, Ramos CL, Gladwell T, Renks E, Centra M, Young D, Cohen MS, Rosen GM.
    Anal Biochem; 1994 Feb 15; 217(1):76-83. PubMed ID: 8203741
    [Abstract] [Full Text] [Related]

  • 19. Spin-trapping of superoxide by 5,5-dimethyl-1-pyrroline N-oxide: application to isolated perfused organs.
    Pou S, Rosen GM.
    Anal Biochem; 1990 Nov 01; 190(2):321-5. PubMed ID: 1963276
    [Abstract] [Full Text] [Related]

  • 20. Kinetic studies on spin trapping of superoxide and hydroxyl radicals generated in NADPH-cytochrome P-450 reductase-paraquat systems. Effect of iron chelates.
    Yamazaki I, Piette LH, Grover TA.
    J Biol Chem; 1990 Jan 15; 265(2):652-9. PubMed ID: 2153108
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.