These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
377 related items for PubMed ID: 25460206
1. Prioritization of potential candidate disease genes by topological similarity of protein-protein interaction network and phenotype data. Luo J, Liang S. J Biomed Inform; 2015 Feb; 53():229-36. PubMed ID: 25460206 [Abstract] [Full Text] [Related]
2. Prioritization of candidate disease genes by enlarging the seed set and fusing information of the network topology and gene expression. Zhang SW, Shao DD, Zhang SY, Wang YB. Mol Biosyst; 2014 Jun; 10(6):1400-8. PubMed ID: 24695957 [Abstract] [Full Text] [Related]
3. Gene gravity-like algorithm for disease gene prediction based on phenotype-specific network. Lin L, Yang T, Fang L, Yang J, Yang F, Zhao J. BMC Syst Biol; 2017 Dec 06; 11(1):121. PubMed ID: 29212543 [Abstract] [Full Text] [Related]
4. Prioritization of candidate disease genes by combining topological similarity and semantic similarity. Liu B, Jin M, Zeng P. J Biomed Inform; 2015 Oct 06; 57():1-5. PubMed ID: 26173039 [Abstract] [Full Text] [Related]
5. Prioritization of orphan disease-causing genes using topological feature and GO similarity between proteins in interaction networks. Li M, Li Q, Ganegoda GU, Wang J, Wu F, Pan Y. Sci China Life Sci; 2014 Nov 06; 57(11):1064-71. PubMed ID: 25326068 [Abstract] [Full Text] [Related]
6. Global risk transformative prioritization for prostate cancer candidate genes in molecular networks. Chen L, Tai J, Zhang L, Shang Y, Li X, Qu X, Li W, Miao Z, Jia X, Wang H, Li W, He W. Mol Biosyst; 2011 Sep 06; 7(9):2547-53. PubMed ID: 21735017 [Abstract] [Full Text] [Related]
7. ProSim: A Method for Prioritizing Disease Genes Based on Protein Proximity and Disease Similarity. Ganegoda GU, Sheng Y, Wang J. Biomed Res Int; 2015 Sep 06; 2015():213750. PubMed ID: 26339594 [Abstract] [Full Text] [Related]
8. Constructing an integrated gene similarity network for the identification of disease genes. Tian Z, Guo M, Wang C, Xing L, Wang L, Zhang Y. J Biomed Semantics; 2017 Sep 20; 8(Suppl 1):32. PubMed ID: 29297379 [Abstract] [Full Text] [Related]
9. Prioritizing disease genes with an improved dual label propagation framework. Zhang Y, Liu J, Liu X, Fan X, Hong Y, Wang Y, Huang Y, Xie M. BMC Bioinformatics; 2018 Feb 08; 19(1):47. PubMed ID: 29422030 [Abstract] [Full Text] [Related]
11. Predicting diabetes mellitus genes via protein-protein interaction and protein subcellular localization information. Tang X, Hu X, Yang X, Fan Y, Li Y, Hu W, Liao Y, Zheng MC, Peng W, Gao L. BMC Genomics; 2016 Aug 18; 17 Suppl 4(Suppl 4):433. PubMed ID: 27535125 [Abstract] [Full Text] [Related]
12. Incorporating topological information for predicting robust cancer subnetwork markers in human protein-protein interaction network. Khunlertgit N, Yoon BJ. BMC Bioinformatics; 2016 Oct 06; 17(Suppl 13):351. PubMed ID: 27766944 [Abstract] [Full Text] [Related]
13. A novel candidate disease genes prioritization method based on module partition and rank fusion. Chen X, Yan GY, Liao XP. OMICS; 2010 Aug 06; 14(4):337-56. PubMed ID: 20726795 [Abstract] [Full Text] [Related]
14. Pinpointing disease genes through phenomic and genomic data fusion. Jiang R, Wu M, Li L. BMC Genomics; 2015 Aug 06; 16 Suppl 2(Suppl 2):S3. PubMed ID: 25708473 [Abstract] [Full Text] [Related]
15. Identifying protein complexes based on multiple topological structures in PPI networks. Chen B, Wu FX. IEEE Trans Nanobioscience; 2013 Sep 06; 12(3):165-72. PubMed ID: 23974659 [Abstract] [Full Text] [Related]
18. Identification of human protein complexes from local sub-graphs of protein-protein interaction network based on random forest with topological structure features. Li ZC, Lai YH, Chen LL, Zhou X, Dai Z, Zou XY. Anal Chim Acta; 2012 Mar 09; 718():32-41. PubMed ID: 22305895 [Abstract] [Full Text] [Related]