These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
338 related items for PubMed ID: 25460769
1. Oxidation of tetracycline antibiotics induced by Fe(III) ions without light irradiation. Wang H, Yao H, Sun P, Pei J, Li D, Huang CH. Chemosphere; 2015 Jan; 119():1255-1261. PubMed ID: 25460769 [Abstract] [Full Text] [Related]
2. Transformation of Tetracycline Antibiotics and Fe(II) and Fe(III) Species Induced by Their Complexation. Wang H, Yao H, Sun P, Li D, Huang CH. Environ Sci Technol; 2016 Jan 05; 50(1):145-53. PubMed ID: 26618388 [Abstract] [Full Text] [Related]
5. Competitive adsorption of tetracycline, oxytetracycline and chlortetracycline on soils with different pH value and organic matter content. Conde-Cid M, Ferreira-Coelho G, Núñez-Delgado A, Fernández-Calviño D, Arias-Estévez M, Álvarez-Rodríguez E, Fernández-Sanjurjo MJ. Environ Res; 2019 Nov 05; 178():108669. PubMed ID: 31450146 [Abstract] [Full Text] [Related]
6. Fe(III)-promoted transformation of β-lactam antibiotics: Hydrolysis vs oxidation. Chen J, Wang Y, Qian Y, Huang T. J Hazard Mater; 2017 Aug 05; 335():117-124. PubMed ID: 28437695 [Abstract] [Full Text] [Related]
8. Degradation of tetracyclines by peracetic acid and UV/peracetic acid: Reactive species and theoretical computations. Meng L, Dong J, Chen J, Lu J, Ji Y. Chemosphere; 2023 Apr 05; 320():137969. PubMed ID: 36736472 [Abstract] [Full Text] [Related]
9. The removal of tetracycline, oxytetracycline, and chlortetracycline by manganese oxide-doped copper oxide: the behaviors and insights of Cu-Mn combination for enhancing antibiotics removal. Wu K, Zhang C, Liu T, Lei H, Yang S, Jin P. Environ Sci Pollut Res Int; 2020 Apr 05; 27(11):12613-12623. PubMed ID: 32006329 [Abstract] [Full Text] [Related]
10. Reactive Molecular Dynamics Simulation on Degradation of Tetracycline Antibiotics Treated by Cold Atmospheric Plasmas. Guo J, Zhang Y. Molecules; 2023 May 01; 28(9):. PubMed ID: 37175259 [Abstract] [Full Text] [Related]
11. Reevaluation for UV photolysis of Fe(III) inducing tetracycline abatement: Overlooked significance of complexation-assistance in environmental fates of antibiotics. Cheng X, Wang J, Yang B, Wang C, Chu W, Guo H. J Hazard Mater; 2023 Sep 15; 458():131909. PubMed ID: 37459759 [Abstract] [Full Text] [Related]
12. Electrochemical oxidation of tetracycline antibiotics using a Ti/IrO2 anode for wastewater treatment of animal husbandry. Miyata M, Ihara I, Yoshid G, Toyod K, Umetsu K. Water Sci Technol; 2011 Sep 15; 63(3):456-61. PubMed ID: 21278467 [Abstract] [Full Text] [Related]
13. Contrastive removal of oxytetracycline and chlortetracycline from aqueous solution on Al-MOF/GO granules. Yu LL, Luo ZF, Zhang YY, Wu SC, Yang C, Cheng JH. Environ Sci Pollut Res Int; 2019 Feb 15; 26(4):3685-3696. PubMed ID: 30535742 [Abstract] [Full Text] [Related]
14. Removal of tetracycline and oxytetracycline by microscale zerovalent iron and formation of transformation products. Hanay O, Yıldız B, Aslan S, Hasar H. Environ Sci Pollut Res Int; 2014 Mar 15; 21(5):3774-82. PubMed ID: 24281679 [Abstract] [Full Text] [Related]
15. Photochemical transformations of tetracycline antibiotics influenced by natural colloidal particles: Kinetics, factor effects and mechanisms. Liu F, Liu X, Zhao S, Wang J, Qian X, Cui B, Bai J. Chemosphere; 2019 Nov 15; 235():867-875. PubMed ID: 31284135 [Abstract] [Full Text] [Related]
16. Oxidation of tetracycline and oxytetracycline for the photo-Fenton process: Their transformation products and toxicity assessment. Han CH, Park HD, Kim SB, Yargeau V, Choi JW, Lee SH, Park JA. Water Res; 2020 Apr 01; 172():115514. PubMed ID: 31986402 [Abstract] [Full Text] [Related]
17. Characterization of a robust cold-adapted and thermostable laccase from Pycnoporus sp. SYBC-L10 with a strong ability for the degradation of tetracycline and oxytetracycline by laccase-mediated oxidation. Tian Q, Dou X, Huang L, Wang L, Meng D, Zhai L, Shen Y, You C, Guan Z, Liao X. J Hazard Mater; 2020 Jan 15; 382():121084. PubMed ID: 31473514 [Abstract] [Full Text] [Related]
18. Photolysis of chlortetracycline in aqueous solution: kinetics, toxicity and products. Chen Y, Li H, Wang Z, Tao T, Wei D, Hu C. J Environ Sci (China); 2012 Jan 15; 24(2):254-60. PubMed ID: 22655385 [Abstract] [Full Text] [Related]
19. Activation of persulfate by homogeneous and heterogeneous iron catalyst to degrade chlortetracycline in aqueous solution. Pulicharla R, Drouinaud R, Brar SK, Drogui P, Proulx F, Verma M, Surampalli RY. Chemosphere; 2018 Sep 15; 207():543-551. PubMed ID: 29843031 [Abstract] [Full Text] [Related]
20. Effect of solution properties, competing ligands, and complexing metal on sorption of tetracyclines on Al-based drinking water treatment residuals. Punamiya P, Sarkar D, Rakshit S, Datta R. Environ Sci Pollut Res Int; 2015 May 15; 22(10):7508-18. PubMed ID: 25647490 [Abstract] [Full Text] [Related] Page: [Next] [New Search]