These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


164 related items for PubMed ID: 2546141

  • 1. Transport characteristics of ceftibuten (7432-S), a new oral cephem, in rat intestinal brush-border membrane vesicles: proton-coupled and stereoselective transport of ceftibuten.
    Yoshikawa T, Muranushi N, Yoshida M, Oguma T, Hirano K, Yamada H.
    Pharm Res; 1989 Apr; 6(4):302-7. PubMed ID: 2546141
    [Abstract] [Full Text] [Related]

  • 2. Transport characteristics of ceftibuten, a new oral cephem, in rat intestinal brush-border membrane vesicles: relationship to oligopeptide and amino beta-lactam transport.
    Muranushi N, Yoshikawa T, Yoshida M, Oguma T, Hirano K, Yamada H.
    Pharm Res; 1989 Apr; 6(4):308-12. PubMed ID: 2748518
    [Abstract] [Full Text] [Related]

  • 3. H+ coupled transport of orally active cephalosporins lacking an alpha-amino group across brush-border membrane vesicles from rat small intestine.
    Sugawara M, Iseki K, Miyazaki K.
    J Pharm Pharmacol; 1991 Jun; 43(6):433-5. PubMed ID: 1681058
    [Abstract] [Full Text] [Related]

  • 4. H+ coupled transport of p.o. cephalosporins via dipeptide carriers in rabbit intestinal brush-border membranes: difference of transport characteristics between cefixime and cephradine.
    Inui K, Okano T, Maegawa H, Kato M, Takano M, Hori R.
    J Pharmacol Exp Ther; 1988 Oct; 247(1):235-41. PubMed ID: 3171973
    [Abstract] [Full Text] [Related]

  • 5. A proton gradient, not a sodium gradient, is the driving force for active transport of lactate in rabbit intestinal brush-border membrane vesicles.
    Tiruppathi C, Balkovetz DF, Ganapathy V, Miyamoto Y, Leibach FH.
    Biochem J; 1988 Nov 15; 256(1):219-23. PubMed ID: 2851979
    [Abstract] [Full Text] [Related]

  • 6. A proton gradient is the driving force for uphill transport of lactate in human placental brush-border membrane vesicles.
    Balkovetz DF, Leibach FH, Mahesh VB, Ganapathy V.
    J Biol Chem; 1988 Sep 25; 263(27):13823-30. PubMed ID: 2843538
    [Abstract] [Full Text] [Related]

  • 7. Na-H exchange in rat liver basolateral but not canalicular plasma membrane vesicles.
    Moseley RH, Meier PJ, Aronson PS, Boyer JL.
    Am J Physiol; 1986 Jan 25; 250(1 Pt 1):G35-43. PubMed ID: 3002192
    [Abstract] [Full Text] [Related]

  • 8. Mechanism of urate and p-aminohippurate transport in rat renal microvillus membrane vesicles.
    Kahn AM, Branham S, Weinman EJ.
    Am J Physiol; 1983 Aug 25; 245(2):F151-8. PubMed ID: 6309010
    [Abstract] [Full Text] [Related]

  • 9. Cholate uptake in basolateral rat liver plasma membrane vesicles and in liposomes.
    Caflisch C, Zimmerli B, Reichen J, Meier PJ.
    Biochim Biophys Acta; 1990 Jan 15; 1021(1):70-6. PubMed ID: 2294964
    [Abstract] [Full Text] [Related]

  • 10. Transport characteristics of cephalosporin antibiotics across intestinal brush-border membrane in man, rat and rabbit.
    Sugawara M, Toda T, Iseki K, Miyazaki K, Shiroto H, Kondo Y, Uchino J.
    J Pharm Pharmacol; 1992 Dec 15; 44(12):968-72. PubMed ID: 1361560
    [Abstract] [Full Text] [Related]

  • 11. H+ coupled uphill transport of aminocephalosporins via the dipeptide transport system in rabbit intestinal brush-border membranes.
    Okano T, Inui K, Maegawa H, Takano M, Hori R.
    J Biol Chem; 1986 Oct 25; 261(30):14130-4. PubMed ID: 3021727
    [Abstract] [Full Text] [Related]

  • 12. Hydroxyl/bile acid exchange. A new mechanism for the uphill transport of cholate by basolateral liver plasma membrane vesicles.
    Blitzer BL, Terzakis C, Scott KA.
    J Biol Chem; 1986 Sep 15; 261(26):12042-6. PubMed ID: 3017959
    [Abstract] [Full Text] [Related]

  • 13. H+ gradient-dependent and carrier-mediated transport of cefixime, a new cephalosporin antibiotic, across brush-border membrane vesicles from rat small intestine.
    Tsuji A, Terasaki T, Tamai I, Hirooka H.
    J Pharmacol Exp Ther; 1987 May 15; 241(2):594-601. PubMed ID: 3572815
    [Abstract] [Full Text] [Related]

  • 14. Transport mechanism of ceftibuten, a dianionic cephem, in rat renal brush-border membrane.
    Naasani I, Sugawara M, Kobayashi M, Iseki K, Miyazaki K.
    Pharm Res; 1995 Apr 15; 12(4):605-8. PubMed ID: 7596999
    [Abstract] [Full Text] [Related]

  • 15. Sodium and chloride transport across rabbit ileal brush border. II. Evidence for Cl-HCO3 exchange and mechanism of coupling.
    Knickelbein R, Aronson PS, Schron CM, Seifter J, Dobbins JW.
    Am J Physiol; 1985 Aug 15; 249(2 Pt 1):G236-45. PubMed ID: 3927745
    [Abstract] [Full Text] [Related]

  • 16. Transport characteristics of ceftibuten, cefixime and cephalexin across human jejunal brush-border membrane.
    Sugawara M, Iseki K, Miyazaki K, Shiroto H, Kondo Y, Uchino J.
    J Pharm Pharmacol; 1991 Dec 15; 43(12):882-4. PubMed ID: 1687593
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Mechanisms of p-aminohippurate transport by brush-border and basolateral membrane vesicles isolated from rat kidney cortex.
    Hori R, Takano M, Okano T, Kitazawa S, Inui K.
    Biochim Biophys Acta; 1982 Oct 22; 692(1):97-100. PubMed ID: 7171590
    [Abstract] [Full Text] [Related]

  • 19. Multiplicity of the H+-dependent transport mechanism of dipeptide and anionic beta-lactam antibiotic ceftibuten in rat intestinal brush-border membrane.
    Iseki K, Sugawara M, Sato K, Naasani I, Hayakawa T, Kobayashi M, Miyazaki K.
    J Pharmacol Exp Ther; 1999 Apr 22; 289(1):66-71. PubMed ID: 10086988
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.